Suse

GEORG-SIMON-OHM
FACHHOCHSCHULE
University of Applied Sciences NURNBERG“

Georg-Simon-Ohm Fachhochschule Niirnberg
Fachbereich Informatik

André Duffeck

Master Thesis

XML-Schema based generation of Graphical User Interfaces with

a Qt

Author:

Matriculation Number:
Address:

Email Address:
Supervisors:

Begin:
End:

-based prototype

André Duffeck

936176

Kirschgartenstr. 49

90419 Nurnberg

Germany

andre@duffeck.de

Dipl. Phys. Cornelius Schumacher
Prof. Dr. R. Kern

01. March 2007

31. July 2007

Erklarung

Ich erklédre hiermit, dass ich die vorliegende Masterarbeit mit dem Thema ,,XML-Schema
based generation of graphical User Interfaces with a Qt-based prototype ““ selbstidndig verfasst,
noch nicht anderweitig fiir Priifungszwecke vorgelegt, keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt sowie wortliche und sinngeméle Zitate als solche gekennze-
ichnet habe.

Andre Duffeck

Abstract

The creation of graphical user interfaces (GUIs) is a recurring task for application devel-
opers. This task is both error-prone and time-consuming and often leads to duplicate code.
Furthermore the split of data definition and user interface can lead to problems when the un-
derlying data changes.

This work examines possibilities of describing and creating GUIs with a description lan-
guage and generating such descriptions based on a schema of the underlying data structure.
The goal is to provide a mechanism to automate the generation of graphical user interfaces
in such a manner, that the developer ideally doesn’t have to care about the interface at all.
The interfaces are generated from the information available and possibly be extended or pol-
ished with “hints*. Those hints describe details of how an element should be placed or what it
should look like. Therefore, the interface is described using a description language based on
XForms, generated from the definition of the handled data structure and the hints. This GUI
description document can be used to create the concrete user interface.

Furthermore, a prototype application was created using the Qt application framework, which
is capable of both creating a GUI from a schema and editing this GUI.

Contents

1

Introduction

Theory

2.1 Evolution Of User Interfaces

2.2 GUIGeneration vt e e e e e
2.2.1 Principles Of Good GUI Design
2.2.2 Ordinary Approach L
2.2.3 Automatic Approach o
2.2.4 Scenarios For ANew Approach

23 XMLand XML Schema

24 XPath

Existing GUI Generation Projects

3.1 UIML . .. e
31,1 Concept
3.1.2 Document Structure
32 XUL . . e
32.1 GUILayout. e
322 GUIElements. e
323 Controls
324 Overlays e
3.2.5 XBL - Extensible Bindings Language
326 XPlInstall
33 XForms e
33.1 TheXFormsModel
33.2 The XForms View
333 Eventsand Action

34 Otherlanguages L

10
10
11
11
13
14
15
15
17

Contents 5
3.5 Conclusion 33

4 Architecture 34
4.1 BasicConditions 34
42 UseCases v v v i it e 34
43 DataLlayers e 35
4.4 Components And Interaction 36

5 The Kode Project 38
5.1 Used Tools And Technologies 38
5.1.1 The Qt Application Framework 38

5.1.2 The KDE Desktop Environment 39

513 UnitTesting o 40

5.2 PriorWork. 40
5.2.1 Schemaparser 40

522 kxmlcompiler 41

523 KXForms 41

5.3 Formats 41

6 The kxforms Specification 43
6.1 Structure 43
6.1.1 Forms 44

6.1.2 Controls. e 45

6.1.3 Control Properties, 48

6.2 Element Positioning 50
6.2.1 StaticApproach. 51

6.2.2 Relational Approach 52

6.3 Group Positioning 53
6.4 Hints. 54
6.4.1 Technique 54

6.4.2 ImplementedHints 55

7 Generation Of The kxforms Document 61
7.1 Forms e e e 61
7.2 SimpleType Elements 61
7.3 ComplexType Elements 62

Contents 6

T4 LiStS . . o e 62

8 The KXForms Application 64
8.1 UseCases v v v i it e e e e 64
8.2 Architecture 65
8.3 GUIGenerationDetails 66

9 Live Editing Of GUIs 68
9.1 Required Functionality, 68
9.2 Architecture e 68
9.3 The Editing Process 72
9.4 List Of Implemented Editor Actions 73

9.5 Working With The Editor 74

10 Case Study: The KDE Feature Plan 76
10.1 Generating A kxforms document L. 76
10.2 Generating AGUIL. 82
10.3 Tweaking The GUI 83

11 Conclusion And Outlook 86
Appendix A: Bibliography 87
Appendix B: Glossary 89
Appendix C: The kxforms Specification 90
1 Introduction 91
2 KXForms 92
2.1 KXForms Common 92
2.1.1 Common Attributes o 92

2.1.2 Common Child Elements 94

22 KXForms Core e 96
2.2.1 Thekxforms Element 96

222 TheformElement 96

2.3 KXForms GUI Elements Descriptions 98

23.1 Thexf:input Element 98

Contents 7
2.3.2 Thexf:textareaElement 98

233 ThelistElement, 99

234 ThesectionElement 100

235 Thexf:selectliElement 101

23.6 Thexf:selectElement 102

2.4 KXForms Special Elements Descriptions 103
24.1 ThedefaultsElement 103

242 ThegroupsElement. 103

243 ThegroupElement, 104

244 TheheadersElement 105

245 TheheaderElement. 105

24.6 TheitemClassElement 106

247 The itemLabel Element 106

24.8 The itemLabelArgElement 107

249 Thexf:itemElement L. 107
24.10 Thexf:valueElement 108
24.11 The inputpropertiesElement 108
24.12 The propertiesElement 109

2.5 KXForms Input Property Elements Descriptions 110
25.1 ThetypeElement L. 110

2.5.2 The constraint Element 110

2.6 KXForms Property Elements Descriptions 111
2.6.1 ThereadonlyElement 111

2.6.2 TherelevantElement 111

2,63 ThelayoutElement. 111

2.7 KXForms Layout Elements Descriptions 113
277.1 The groupRef Element 113

27.2 ThepositionElement 113

2773 The appearance Element, 114

274 The layoutstyle Element 114

3 Hints 116
3.1 Technique 116
3.2 ImplementedHints 117

Chapter 1

Introduction

The human-machine interface of choice these days is the Graphical User Interface (GUI). It
excels as an easy and intuitive method of running a machine and is becoming ubiquitous as
computers, mobiles and PDAs become more and more popular.

For the software developers however, designing GUIs is a annoying task. Creating good
GUISs is time-consuming and for non-trivial interfaces only usability experts will achieve sat-
isfactory results. This work tries to evaluate a solution for automating the generation of the
GUIL

Therefore it exploits the fact that a high percentage of GUIs are used for displaying or
editing data, of which the format is specified in some way. For these cases, it should be
possible to use this information to create a description of the required elements and their
relations to the according data fields. This GUI description document could then be used to
generate an actual GUI from it. The format for describing the GUI should be abstract enough
to allow rendering on different systems.

It may be expected however, that the generated GUI is not always the perfect way of pre-
senting the data. Thus, an additional format (hints) should be specified, which can be used to
give the rendering application instructions of how to change the appearance of specific parts
of the GUL

As a second part of this work, a prototype application was created, which should be able to
create non-trivial GUI descriptions and render them into a usable GUI. For this prototype the
Kode project of KDE was chosen, which already provided a basic framework for this purpose.
The format of the underlying data in this work is restricted to XML and XML schemas, which
are a widespread method of exchanging and verifying data between systems or applications

and are both human- and machine-readable and thus easy to handle.

CHAPTER 1. INTRODUCTION 9

Furthermore, this prototype should implement an edit mode, which allows the modification
of the GUI. The changes should then be exportable as a hints file, so that they can be reused

later.

Chapter 2

Theory

This chapter describes the basic technologies and backgrounds of this work.

2.1 Evolution Of User Interfaces

In order to control a computer, there has to be an interface, over which the input and output is
given. This human-machine interface has evolved rapidly since the beginnings of computing.

With the first computers in the 1940’s, input was given as punched cards (Figure 2.1). A
punched card is a piece of paper that contains binary information in form of the presence or
absence of holes. The position of the holes is predefined, so that the machine can determine if

the hole is missing or not.

Figure 2.1: Punched Card

Punched cards were used for both the programs and the data and were created with key

punch machines. These machines were manual machines in the beginning and were mecha-

2.2 GUI Generation 11

nized later. The computer in return gave the output as long print-outs. This method of data
input and output was slow and only specialists were able to use the computers at that time.

This changed in the 1950’s, when the industry discovered the potential of computers. The
new systems had monitors and keyboards, allowing fast data input and immediate output of
results. This kind of interface was improved further in the 1970’s with the CUI (Character-
based User Interface). The interface was a commandline, where the user could send human-
readable commands to the computer and immediately get the result presented on the monitor.
The CUI needed only short training and made it possible to let office workers operate the
computers.

The next evolutionary step in user interfaces was the introduction of the GUI, the Graph-
ical User Interface. Here, the interaction with the machine is done with a keyboard and a
pointing device such as a mouse, which feels more natural for the users. In other words, a
GUI is a “hierarchical, graphical front-end to a software that accepts as input user-generated
and system-generated events from a fixed set of events and produces deterministic graphical
output. A GUI contains graphical objects and each object has a fixed set of properties. At
any time during the execution of the GUI, these properties have discrete values, the set of
which constitutes the state of the GUI” [10]. Those ”graphical objects” are called widgets. A
widget is a single graphical element such as a button, an icon or a progressbar, which, sanely
assembled together, form an application.

Although there are new Ul trends coming up with 3-dimensional interfaces and voice recog-
nition the GUI is not showing any indication of going away. Thus, the generation of GUIs is
an important task, because with the GUI being the direct interface between the user and the

machine, having a high quality GUI is crucial for the whole application.

2.2 GUI Generation

2.2.1 Principles Of Good GUI Design

A lot of work was done on GUI design [6] [8] [9] [21]. They all describe the requirements and
principles that a GUI designer has to take into account.

The most basic principles that are mentioned are listed below:

o Simplicity

First of all, GUIs have to be simple. The worst thing that can happen is that the user of

the application gets flooded with information and options and choices he or she has to

2.2 GUI Generation 12

&# Arbeitsplatz - Kongueror 1% Knpete . 3 m. »
(7] E]@ Arbeitsplatz - Konqueror E] E]

Dokument Bearbeiten Ansicht Gehezu Lesezeichen Exras Einstellungen FEenster Hilfe
QIOIOI0) OI&)
(B | Adresse: (@ sysinfo/ v)(&))([@ Googee-Suche .|

Arbeitsplatz

Ordner, Festplatten, Wechselmedien, Systeminformation und mehr...

Gemeinsame Ordner Datentrdager
{ Eigene Dokumente GErst isy Speicherpl
- \ Persénlicher Home-Ordner # Audio-CD 476.31 MB
Datel Bearbeiten Root-Ordner 31616 Medium ext2 14765 GE 14004 GB
| Einstellungen Hilfe Netzwerkordner 3216 Medium ex2 1969 GE BE6GB
BLAI&IE =) &

CPU-Informationen

Sgchen:

Betriebssystem

Frozessor iCPLY: Genuine InteliR)
CPU 280GH?z | Eetriebssystermn: Linux 2.6.18 2-34-default i586
Geschwindigkeit 2,800.01 MHz = aduffeck@e248
Sy openSUSE 102 (iS86)
Speicherinformationen KDE: 357 "release 31.1
- Gesamtspeicher)
Q@ (RAMY: 1.009.98 MB Graphikkarte
a8 4557 MB (+ [K ‘ Hersteller nVidia Carporation
1 . Freier Speicher: 16279 MB
HEEE Y aa® Zwischenspeicher) S | \iodell GeForce 6600 GT
= Treiber: nvidia E

Seite geladen.

Figure 2.2: Modern GUI showing two applications (KDE 3.5)

make. Users will usually react frightened and negatively, preventing concentration. The
GUI should rather try to focus the user’s attention on the important things and hide the

options of less importance in configuration dialogs, for example.

e Task Orientation

Software Developers tend to design the GUI from the developer’s point of view, e.g.
the main attention is on the implementation and feasibility. Here, the user’s concerns,

namely performing some task efficiently, is often neglected.

2.2 GUI Generation 13

e Consistency

The application should be consistent in appearance and behaviour. If there are similar
elements or behavioural structures, they should be consistent. This allows the user to

get used to the GUI and learn and apply patterns.

2.2.2 Ordinary Approach

In ordinary programming techniques the need for Graphical User Interfaces is always handled
the same way. The software developer has to identify the data that should be shown to or
edited by the user at compile time. According to these data fields, he then has to create a GUI
manually or using a graphical GUI Editor.

This approach has some big disadvantages:

o High Effort

Creating GUIs manually is very time-consuming. Creating and integrating a GUI into
an application involves two steps:
— Design
The software developer has to place one control per data field onto the widget.
Therefore he has to think of a descriptive label and choose the right widget type
for the corresponding data type. Additionally, the widgets should be grouped and

placed reasonably, that means that logically related elements should be placed next

to each other instead of spread over the form.
— Integration

In the next step the connection from the created controls to the underlying data has
to be made. The developer has to create data structures to hold the data in memory
and add logic to the application to dispatch changes of the GUI to the data and if
it is needed, the other way around. Dependent on the data this can be a both very

fiddly and error prone task, which often needs a lot of testing.

Additionally, there are often dependencies and interactions between data elements
which have to be mapped to the GUI. As an example, there are often data fields that
are only relevant if another element fulfills a condition, e.g. if a certain checkbox is
checked. These types of connections also has to be implemented manually which

is - depending to the used framework - sometimes hard or cumbersome.

2.2 GUI Generation 14

e Non-uniform appearance

Every software developer has a different way of designing interfaces. Although there
are guidelines for bigger projects such as the KDE HIG (Human Interface Guideline)
[3] for applications that are supposed to be shipped with KDE, many developers still

don’t know of it.

This results in fundamentally different GUISs, even if there are common patterns. The
different look-and-feel for each application results in bad usability and might confuse

the users. It also is bad from an aesthetic point of view.

e Low-Quality interfaces

Software developers usually are not usability experts. That means that they have the
knowledge and skills to create an application that presents some data to the user, but the
quality of the presentation might be not the best possible. This might result in GUIs that
are cumbersome to use and require more clicks to perform an action than it would be

necessary with a optimized GUIL

e Missing capability to adapt to data changes
The GUI is static. If the underlying data of the application changes, the GUI has to be

adapted manually. This in return results in a recompile of the whole application which

then needs to be shipped to the users again.

2.2.3 Automatic Approach

The problems described in the above section lead to the question, whether it is possible to
automate the process of GUI generation. Often, the data that is processed with the application
is specified in domain and type.

Taking these information into account, it becomes obvious that these descriptions are inti-
mately connected with the GUIs that are needed to show or edit this kind of data. While it
might not be possible to extract details such a sensible positioning of each element, it should
still be sufficient to generate a description of the GUI that tells which elements are required
and how they are related to the underlying data structure. This would be good enough to

present the whole data and provide facilities to edit it.

2.3 XML and XML Schema 15

2.2.4 Scenarios For A New Approach

e Fast and automatic generation of a GUI

It is often necessary to create interfaces to simple data such as configuration files or
something similar. These interfaces are usually pretty simple because there are only
basic data types that need to be edited and there are only few dependencies if any. In
these cases the automatic approach would allow the developer to automatically create

the GUI and therefore require much less time than a manual approach.

The GUI can simply be created from an XML Schema or any other complete data de-
scription language.

e Creating a GUI for data that is likely to change

Another scenario is an application that works with data that is likely to change its format.
This means that during the lifecycle of the application the underlying data might get
additional fields or fields might be removed or renamed.

e Prototyping

When creating applications, it is sometimes useful to create a first prototype in order to
test the basic functionality or the interaction with other systems. For this purpose, the
automatic approach would let the developer test the application over the whole devel-
opment cycle without actually having to create and adapt a GUI first. This would again

lead to less expenditure of time.

2.3 XML and XML Schema

XML (Extensible Markup Language) is a general-purpose markup language [16][17][18]. It
is used in the IT world as an easy way to store and exchange arbitrary information between
applications or systems. Another reason for the success of XML as a data container probably
is the fact, that it is both human- and machine-readable, which allows fast and uncomplicated
application development.

With XML, the data is arranged in a tree which exists of nodes. Each node can contain data,
subnodes, attributes or a combination of those. This model is sufficient to map most of the
data structures that are used in computer science.

It is often helpful to validate XML documents. Therefor, one can specify the structure of the
XML with XML Schema. Only documents that conform to this Schema are then considered
as valid.

0 N N bW N —

10
11
12

2.3 XML and XML Schema

16

<employees>
<employee role="manager">
<firstname>Dave</firstname>
<surname>Smith</surname>
<salary>300000</salary>
</employee>
<employee role="developer">
<firstname>Mark</firstname>
<surname>Rogers</surname>
<salary>40000</salary>
</employee>
</employees>

Listing 2.1: Example XML Document

XML Schema allows to define both data types and the document structure. Data types

can be either SimpleTypes or ComplexTypes. SimpleTypes are basic types such as strings,

numbers, time or date etc. XML Schema defines about 45 of them. ComplexTypes are either

combinations of these primitive types or restrictions of them. Thus, it is possible to define

a ComplexType Employee that consists of two strings and a number, describing the name,

surname and salary.

An example for a restriction is a ComplexType that is a string, but that can only be one

of a specific set of strings. Those restrictions (facets) allow to define a minimum and/or a

maximum value or the amount of decimal places for numbers or the structure of a string. This

is achieved with a regular expression that the string has to match.

The structural component of XML Schema describes the relation between elements, at-

tributes and types. This allows the definition of lists of elements or in which order the elements

have to appear in the document, for example.
The XML document above could be described with the following XML Schema:

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:element name="employees">
<xs:complexType>

<xs: sequence>

<xs:element ref="employee"

</xs:sequence>
</xs:complexType>

</xs:element>

max0ccurs="unbounded" />

11
12
13
14
15
16
17
18
19
20
21
22

2.4 XPath 17

<xs:element name="employee">
<xs:complexType>
<xs:sequence>
<xs:element name="firstname" type="xs:string"/>
<xs:element name="surname" type="xs:string"/>
<xs:element name="salary" type="xs:integer"/>
</xs:sequence>
<xs:attribute name="role" type="xs:string"/>
</xs:complexType>

</xs:element>

</xs:schema>

Listing 2.2: Example XML Schema

2.4 XPath

XPath is a language that can be used to address elements of an XML document. In the simplest
form, it just lists the steps that need to be taken to reach an element in the tree that represents
the document. If one would for example want to select the first name of the manager in the

XML example in the previous section, the XPath would look as follows:

/employees/employee [1]/firstname

Listing 2.3: XPath Example 1

If one would rather need all "employee” elements that belong to a manager, it could be done

that way:

/employees/employee [@role="manager"]

Listing 2.4: XPath Example 2

The @’ in the last example denotes that “role” is not an element but an attribute of the
“employee” element. The expression in the square brackets is evaluated for all elements to be
considered. An element is only selected if the expression is fulfilled.

There are other possibilities with XPath, such as computing values based on the content,

but they are not used in this thesis and thus are not described further.

Chapter 3

Existing GUI Generation Projects

For automatic GUI generation a description format is required, which will be used to hold the
information about the GUI. It should on the one hand be as simple as possible in order to ease
the automatic creation, but it should also be flexible enough to allow the fulfillment of the
design principles in 2.2.1. The level of abstraction should be chosen in such a manner, that the
elements can be adequately described but that it at the same time is not depend on a specific
system or application.

While there are only few and very limited applications that try to create GUIs out of
schemas, there are some specifications of formats that describe Uls. This chapter will present

the most important ones and evaluate if they are qualified for a basis for this work.

3.1 UIML

UIML is a meta-language which is designed to describe Uls that can be rendered on several
devices and platforms [11]. That means, that it does not describe the elements of a UI specifi-
cally to a certain device or platform but follows a more abstract approach, so that it can even

be presented on non-graphical systems, for example.

3.1.1 Concept

UIML separates the interface into three major parts: the presentation, the interface and the

logic (see Figure 3.1 on page 19).

The presentation is responsible for the rendering on the respective system that is used. In
the interface part the dialogue between the user and the system is specified. The logic part can

be used to define interaction between the interface and the underlying system.

3.1 UIML 19

Device / Platform Peers Applications /
UI Metaphors P cers ~ . Data Spurces
./// \\\
e ~
I] A ;] » ;]
\\—L Presentation [€— Interface ‘—Pu Logic
. Structure
Vocabularies
Style

Content
L Behavior

Figure 3.1: UIML Structure
Source: User Interface Markup Language (UIML) Specification [11]

3.1.2 Document Structure

A UIML document consists of a uiml root element, which may have 4 types of child elements.

Each of these child elements is optional. The following sections describe them in detail.

The head Element

This element can be used to encapsulate metadata about the document. It consists of meta
elements, which have a name and a content attribute and thus build a key-value-map which
can hold arbitrary information.

It is often used to store information such as the author, date or version.

The template Element

With the template Element, one can define GUIs or parts of GUIs that can be reused by
other GUIs. It might for example be reasonable to create a template for a person’s contact
information, which asks for name, age and address information. This template can then be
used at different places in one GUI or even in other GUIs. That reduces redundant code and
will make the interfaces for the same kind of information look the same, which will make the
user feel more comfortable.

Most of the elements are applicable as templates. To do so, they need to be encapsulated
inside a template element. This element has an id attribute which is used to instantiate this

GUI snippet. Therefore, a placeholder element is put where the template should be shown at

3.1 UIML 20

and the source attribute is pointed to the according template. The bodies of the placeholder
and the template element will then be merged.

The merge process can happen in three modes:

e Replace Mode

In this mode, the elements in the body of the templates are appended to the original
element. If there are conflicts, that means an element that should be appended already
exists, the original child element is deleted and the template child element is then ap-
pended, thus the original child element was replaced.

e Union Mode

In union mode no elements are deleted ever. If an element that should be appended
already exists, the second instance of this element simply gets a different id before
being merged.

e Cascade Mode

Cascade mode means, that only child elements, that are not part of the original element
already are added during the merge process. Thus, the information is not overridden by
the template but only complemented, if the template has different child elements than

the instantiating element.

The interface Element

This element contains the actual description of the interface between the application and the

user, its structure, style and content.

e UI Structure

In the first part of the interface element, the structure of the GUI is defined using the
<structure> element. This element describes the organization of the GUI elements,
e.g. if they are to be arranged on the same level or hierarchically. There can be more than
one <structure> element if the organization should be different on different devices,
for example. One might think of a voice-driven system which would probably better
use a different organization than an application running on a computer would. If there
are multiple structures defined, the respective rendering engine has to define the desired

structure using its id attribute.

Instead of describing a label showing some text as <label> and a button that can be

clicked as <button> all elements are <part> elements. Each of them is further classi-

3.1 UIML 21

fied by a <class> attribute. The properties of the classes can be specified in the style-
section of the document. Additionally, each <part> element has got an id attribute

which is unique and can be used to identify the elements.

If one wants to express a hierarchy between two elements, they simply can be nested.
This will result in the nested element being a part of the outer element, if the platform

or toolkit supports this kind of presentation.

e Styles

Another part of the document is used to describe the properties of the classes that are
referenced by the <part> elements. Therefore, these style elements contain a list of
property elements. Each property is related to one of the used classes and specifies the
property that is defined and its value.

The list of properties that can be defined is not part of the UIML specification, which
results in a more extensible language. The valid properties are rather defined as a part
of the vocabularies, which are used to map an UIML document to a specific device/plat-

form. Properties that are often set are font, size or color of GUI elements.

With styles, the appearance on specific devices can be optimized, so it is common prac-

tice to define one style per device that this GUI is targeted on.

e Content

The content element introduces an abstraction layer for the content of the GUI. GUIs
contain different types of content, for example text, audio or graphics. Instead of apply-
ing a fixed value to each of the elements, one can also create a link to a element specified

in the content section.

As an example, a label, asking the user if he/she really wants to proceed could be linked
via the id “confirmation_label”. Then there could be one content element per language.
In the English content section the label value would be set to ”Do you really want to
proceed?”, while in the German section it would be "Wollen Sie wirklich fortfahren?”
and so on. It is also possible to define different icons e.g. on a device that is targeted for
visually impaired people. Every piece of content in the GUI can be specified per device

using this technique.

¢ Behaviour

The behaviour element is used to describe which actions are triggered when the user

interferes with the GUI. Therefor, a list of conditions is defined, each of which is always

3.1 UIML 22

checked when the user performs an action. If one ore more of the conditions are met,

the corresponding actions are triggered.

UIML distinguishes between two types of conditions. The first one is event-based, that
means that a condition describes which event has to occur in order to meet the condition.

An event is for example when a button is pressed.

The second type of condition specifies a logic expression that has to be fulfilled. An
example for that is a condition that is met when the text of a lineedit element is changed

to the value “dog”.

The actions can be either local, that means that a specific part of the UIML document
is changed, e.g. a property. The second possibility is to call a function in a script or

execute an application.

The peers Element

The preceding structure gives us an abstract description of a GUI, which elements it contains,
how they look like and how the application should behave when certain events occur. With
the peers element it is possible to map this abstract description to a specific toolkit.

This can be achieved with two child elements:

e The presentation Element

This element maps part and event classes and property and event names to the corre-
sponding classes of the toolkit. Such a mapping is called a vocabulary. For the most
common toolkits the software developer does not have to create a vocabulary but can
use the already existing ones, for example for CSS (Cascading Style Sheets) , HTML
(Hypertext Markup Language) or Java.

If such a predefined vocabulary does not exist for a use case or is not sufficient, it is
possible to either extend an existing vocabulary or to create a custom one, allowing
UIML to be used with any toolkit.

e The logic Element

In a section above, the behaviour element was presented which allows to specify how
the GUI should interact with the user. What is still missing is the definition how the GUI
should interact with the underlying application. This can be achieved with the logic

element.

3.2 XUL 23

It therefore allows the definition of objects and functions which are mapped to exter-
nal scripts, methods or objects. In the next step, the calling conventions are specified,
namely the name of the functions, the return type and the number and type of the argu-

ments. These objects and functions can then be used in the UIML document.

<interface name= "Simple Example">
<window name="Main" content="UIML ,Example">
<menubar name="Selections">

<menu name="FileSelection" caption="File">

<menuitem name="itemO" caption ="New"/>

<menuitem name="iteml" caption ="Close"/>

<menuitem name="item2" caption ="Quit" onClick="Main.hide"/>
</menu>

</menubar>
</window>

</interface>

Listing 3.1: UIML Example

: UIML Example _ o] x|
| ew |

Close
Gt

Figure 3.2: Generated GUI From An UIML Description

3.2 XUL

XUL (XML User Interface Language) is another user interface markup language which is
developed by the Mozilla Project [13]. In contrast to UIML (3.1) its purpose is to define cross-
platform computer applications, not abstract interfaces suitable for several different devices.
Thus it is a widget-based description on a far lower level. The described GUI can be specified

in detail and can be rendered on different platforms by different applications. One application

3.2 XUL 24

that is capable of XUL is the Mozilla Gecko rendering engine, for which XUL was originally
designed for.

XUL strictly separates the presentation layer from the logic layer, which results in code that
can be understood and maintained more easily and simplyfies the customization or translation

of the application. The following sections will describe these concepts in more detail.

3.2.1 GUI Layout

Given the fact, that XUL was designed for a web-browser application, it is not remarkable that
it uses technologies that are known from the World Wide Web. It uses CSS for describing the
appearance of the elements and Javascript for the logic, for example. This section describes
the layout facilities that are used.

As stated above, XUL is a widget-based description language. As a first step, XUL intro-
duces the concept of boxes. Boxes contain child elements and layout them according to the
layout directive.

The following list shows the most important properties that can be defined for a box or an

element:

o Orientation

The orientation of a box defines on which axis the elements are aligned. One can choose
between horizontal and vertical orientation, placing the elements next to each other or

on top of each other respectively.

e Direction

Normally, the elements are placed from left to right. This setting can however be set to
right-to-left using the direction property. It’s also possible to inherit that setting from a

parent element.

e Alignment

With the alignment property it is possible to specify how the elements should be posi-
tioned inside of the box. By default, it is set to “stretch”, which means, that all elements
are of the same height, when they are put in a horizontal box, and of the same width,
when they are put in a vertical box. Other options are “start”, “end”, “center’” or “base-

line” which will position the elements accordingly.

3.2 XUL 25

o Element Sizes

Elements can be either of fixed size or flexible. Flexible means, that the element will
use unused space, while a fixed size element just uses the space it needs for its size
and leaves unused space empty. The flex property is automatically set to false, if an
element has a size value set. In case of a flexible element, it is also possible to specify
a minimum size of the element that the size will never go below, a maximum size and a

preferred size.

If there should be no flexible elements in a box, or all elements have already reached
their maximum size and the box still grows further, the behaviour can be defined by the
packing property. This allows to define where the conglomeration of elements should

be shown inside the surrounding box.
This allows the definition of complex layouts that resize properly with regard to the

content or the box size.

Besides these box items, XUL also allows to use 3 other containers for the elements:

e Stacked Elements
If elements are stacked, they are simply put on top of each other. That means, that only
one of them can be visible at a time.

e Grids
Elements also can be put into a grid. That allows to specify the row and column. Ele-
ments in a grid can also be nested, opening new possibilities for a GUIL.

e Popups

Finally, it is possible to create Popup elements, which are not part of the GUI directly
but appear on top of it. Examples for popups would be a tooltip or a menu.

3.2.2 GUI Elements

All widgets and controls in XUL are derived from XULElement. This interface defines a name
and id for the elements and specifies several properties, for example for the layout, the size

and position, tooltip and status information and some more.

e Description and Labels

These two elements are used to display string information to the user and thus are the

most basic widgets available. The description element is capable of HTML markup and

3.2 XUL 26

is completely stylable using CSS. It additionally has a crop property which defines at
which position the content should be cropped if the available space is not sufficient to
display it completely.

A label is a specialised description. It is associated with another element and is capable

of shortcuts, which will activate the corresponding control when actioned.

o Images
It is also possible to embed images into the GUI. This can be achieved using the image
tag which is derived from the HTML image tag.

e Controls

A control is a widget that allows the user to interact with the application. There are
two types of controls available in XUL, which are described in the next section in more
detail.

3.2.3 Controls

All controls share common properties for being disabled and the tabindex describing the or-
der in which the elements are activated when the user presses the “TAB” key. Additionally,

controls have methods that are called, when the control gets the focus or is blurred.

o Labeled Controls

A labeled control is a control that is connected to a specific event. That means that
whenever the control is activated, the corresponding event is generated. The most com-
mon form of a labeled control is a button. Buttons can appear in different forms, being

regular buttons, buttons with a menu, toolbar buttons, radio buttons and checkboxes.

e Select Controls

Select controls offer some options to the user, who can then make a choice. There are
also different ways of presentation possible, such as a listbox, a dropdown list of a group

of radiobuttons.

3.2.4 Overlays

XUL supports overlays, which is a mechanism for extending existing applications dynami-
cally. This can happen in two directions, namely with the application including a specific

overlay or the other way around, thus an overlay plunging itself in an existing application.

3.2 XUL 27

That allows the software developer to create an application that uses an external XUL file as
overlay, which can be customized without touching the main application, and makes it possible
to provide an easy way of creating extensions to an application. The latter can for example be
seen at Firefox, which provides such an interface. There are already many extensions available

for almost every need one might think of [12].

3.2.5 XBL - Extensible Bindings Language

With XBL the software developer gets a tool that enables him to create custom widgets or
event handlers. It allows to extend the given functionality of XUL very flexibly. The developer
can create customized progressbars with special behaviour, new popup menus, toolbars and

so on. Almost every piece of GUI can be created and used in the application.

3.2.6 XPlInstall

XUL ships with a install tool, called XPInstall, which makes the installation of XUL applica-
tions on the supported platforms as easy as possible. The user basically only has to click on
a hyperlink or open the location of the XPI file, which will open the Mozilla installer. After
another click to accept the installation, the application gets automatically copied onto the hard

drive and installed. No manually downloading or copying of files is required.

<?7xml version="1.0"7>

<?7xml-stylesheet href="chrome://global/skin/" type="text/css"?>

<window id="example-window" title="Example; 2.2.1"
xmlns:html="http://www.w3.0rg/1999/xhtml"
xmlns="http://www.mozilla.org/keymaster/"

"gatekeeper/there.is.only.xul">
<button label="Normal"/>
<button label="Disabled" disabled="true"/>

</window>

Listing 3.2: XUL Example [22]

3.3 XForms 28

©) — 0O http:!h X

I: Mormal)
| J

Fertig Laly)

Figure 3.3: Generated GUI From A XUL Description

3.3 XForms

The XForms 1.0 specification was published as an official recommendation by the W3C in
March 2006 [15]. In November 2006, version 1.1 was released as a Working Draft.

XForms uses the Model-View-Controller concept. There is a model, which describes the
data that can be used with the form and what is to be done with the data and the view which
defines how the model is presented. The controller part is given as an complex event frame-

work.

3.3.1 The XForms Model

The model of a XForms form is specified in the model tag of the XForms document. The
document can also contain more than just one model which can then be referenced in the
view.

Below is an example XForms model taken from the XForms specification [19]:

<xforms:model>
<xforms:instance>
<ecommerce xmlns="">
<method/>
<number />
<expiry/>
</ecommerce>
</xforms:instance>

<xforms:submission action="http://example.com/submit"

method="post" id="submit"
includenamespaceprefixes=""/>

</xforms:model>

3.3 XForms 29

Listing 3.3: XForms model

The model description is used to

e Specify the structure of the data

As shown in the example above, the model defines the structure of the data using the
instance tag. In this case, there is a tag called “ecommerce” which has an attribute
“xmlns” and three child elements “method”, “number” and “expiry”. Nothing is said

about the type of the data elements yet, however.

e Preload the model with data
The instance element can also be used to set initial data that will be shown in the form.
Therefor, the XML data skeleton can simply be filled with the desired data.

e Define the action that is to be performed

The example also shows an submission tag. It is used to specify the target, where the
data is transmitted to and parameters such as the method, the encoding or the id of the

action.

e Declare properties for the model elements

Finally, the elements of the model can be specified in more detail using the bind tag.
Therefore, a subset of the model is selected using the nodeset argument and one or

more properties that are to be applied to these elements.
The most important attributes are:
— The type property
This property defines the type of an element of the model. The defaultis xs:string

making all data strings. If one would want to make the credit card number of the

above example a number, it could be achieved with this bind expression:

1| <bind type="xs:integer" nodeset="/ecommerce/number" />

where the desired data type is given as the type attribute and the node is selected

with a XPath expression in the nodeset attribute.
— The readonly property

With this property, elements can be made readonly, preventing the user to make

changes to it.

3.3 XForms 30

— The required property
If an element is marked as required, the XForms processor will ensure that the

element is non-empty before it allows the transmission of the data.
— The constraint property

The constraint property allows to limit the values that are considered valid for
the element. That means that the transmission is only allowed if the given expres-
sion if fulfilled.

3.3.2 The XForms View

Once the model definition is in place, it can be instantiated using XForms controls. There are
controls available for the most common use cases. The most important ones are explained
below.

Each control is related to one XML element in the model. That means, that it will display
the data of that element in the initial XML document (the instance of the model) if there is
one, and that the data of the control will be put into the element when the data is written back.

These are the most important controls of XForms 1.0:

e The input element
The input element is used for free-form data entry, e.g. arbitrary text. In a web browser
for example, it is usually presented to the user as a line edit.

e The secret element
If the user needs to enter secret information - a password for example - it is desirable to
not show the data in cleartext. This can be achieved by using the secret element.

e The textarea element

This control enables the user to input longer texts with linebreaks in it.

e The select element

With the select element, a list of possible values can be presented to the user, who can

then select one or more of them.

If the number of selected items should be limited to only one, the select1 element has

to be used.

Besides these data controls, there are also some interaction controls available:

3.3 XForms 31

e The upload element

This element allows the user to upload files onto the system. This needs not necessarily
be a file on the local hard disk, but can also be a sound recorded from a microphone
or an image from the attached scanner. The application has to provide the facilities to

select the appropriate data.

e The trigger element
The trigger element enables the user to trigger actions, the element is bound to. The
usual way of presentation in a web browser would be a push button.

e The submit element

With this element, the user can submit the data that was entered in the form. The submit
element can also be bound to only parts of the XML document, so a part of the document

may be submitted.

Message Body:

Street |

Flavours Vanilla
Str

Chocolate

Figure 3.4: input, textarea and select control rendered in a browser
Source: XForms 1.0 (Second Edition) [19]

The controls can be specified further with some properties.

e The appearance property

Many controls can be rendered in different ways, occupying more or less space. With
the appearance element, the author of the XForms document can tell the application
how the data should be presented. The possible values for the appearance are “full”,

“compact” and “minimal”.

With a “full” appearance it is ensured that every bit of information is always rendered.
With a list for example, this means that every entry of the list is rendered. It might
however still be necessary to scroll or browse in order to see all the elements, if they

don’t fit on the screen at once.

3.3 XForms 32

A “compact” appearance will show a bigger part of the data at once, but not necessarily
all of it.

“minimal” means, that the control should use as little space as possible, with a list

resulting in a control that shows only one entry at once.

e The hint property

The hint property can be used to define a explanatory description of the according
element, e.g. describing the element in more detail. The application then has to provide
a way for the user to find this information. A web browser would show the hint as a

tooltip, for example.

3.3.3 Events and Action

The behaviour of the controls on a form can be customized using XML events and XForms
actions. Events are generated and emitted at various stages of the processing of a model and
the interaction with the user. These events can be bound to actions which will alter the state
of the form.

The events can be separated into four groups:

o Initialization events

These events are only emitted on the initial processing of the form. One event is
xforms-model-construct-done, for example, which indicates, that the model was

successfully parsed and processed.

e Interaction events

These events are the result of the user interaction with the form. These include xforms-previous
and xforms-next events, that indicate that the previous or next control should be fo-
cused, the xforms-hint event that is emitted when additional information about a con-

trol should be shown and many more.

This allows to determine every action, the user performs on the form.

e Notification events

Notification events indicate state changes of controls. Examples are: a changed value of
a control (xforms-value-change), a control getting focused (DOMFocusIn), a control

becoming invalid (xforms-invalid).

3.5 Conclusion 33

e Error indication events

In order to react to errors, one can use the error indication events. An example is the
xforms-binding-exception which indicates, that a binding expression is invalid or

that the target could not be located.

3.4 Other languages

There are some more languages such as Microsoft’s XAML [7] [14], WML [20] or Macro-
media’s MXML [1], but those are either proprietary formats, no longer developed further or
designed for specific platforms or applications and hence not applicable for the purpose of this

work.

3.5 Conclusion

UIML, XUL and XForms are all powerful description languages. Each of them is capable of
describing GUIs system or platform independently, but they differ in some properties, which
gives each of them the right to exist.

UIML is the most generic solution. With the high level of abstraction it can be used to
describe interfaces for arbitrary systems. With its concepts of styles and vocabularies it is also
possible to customize the look or behaviour as detailed as desired. Furthermore it provides
facilities to specify the behaviour of single elements in many ways. However, this approach is
rather complex and many steps need to be taken before a usable GUI emerges. Mapping this
to an automatic generation would be hard and make the implementation difficult.

XUL in contrast takes a lower level approach. It is more focused on computer applica-
tions what fits the requirements of this thesis better. The low level description is however too
detailed and specific to be generated automatically. A higher level of abstractness is needed
there.

This right degree of abstractness is given with XForms. XForms strictly separates the model
definition from the view definition. The view is instantiated using controls, but the actual
rendering of the form is left to the application, which makes it possible to display the form on
different systems.

Although some parts of XForms, such as the events and actions, are not required for an
automatic GUI generation targetted for computers, the high-level control and properties defi-
nitions make a good base for this project. Thus, XForms is the chosen underlying format used

in this work.

Chapter 4

Architecture

This chapter gives an overview of the reasons and the design of this project.

4.1 Basic Conditions

The implementation of the prototype should be released and developed as open source soft-
ware (OSS). Furthermore, the chosen platform is Linux and the desktop environment that is
used for the application is KDE. KDE was chosen, because it allows rapid development of
high quality applications with its clean and consistent API and the Qt application framework
(see 5.1.1 and 5.1.2).

4.2 Use Cases

The following use cases should be handled by the result of this thesis:

e Create a GUI in order to show or modify some data

The most common use case is, that a user wants to have a GUI that allows to edit some
specific data. The user has some data and a corresponding description of its format and
wants to show or modify this data without creating a dedicated application for it first.
This should be done by only reading the schema of the data. The rendering application
then shows the generated GUI and provides a way to read the data instance for further

processing.

e Modify a generated GUI

If a generated GUI does not fulfill all of the requirements, it should be possible to
edit the GUI and generate a description of the changes that can be used to apply these

4.3 Data Layers 35

changes to the automatically generated GUI. These changes could for example be done
by an usability expert, that knows how to create good applications that are easy to use
and intuitive. This could be useful, if the data description is fetched from a server on
application start up, for example. Then, the description of the GUI changes could be

fetched too and merged in, before the GUI is shown.

e Embed a dynamically generated GUI into another application

Often, the main GUI of an application is static, but some data, such as configuration
data, is not. In these cases it would be desirable to generate a part of the application’s
GUI dynamically. This could be done by providing this functionality in a library which

could be used by other applications.

4.3 Data Layers

There are several layers involved to get from a schema to a GUI, which are shown in Figure 4.2
on page 37. At the lowest layer, there is some data, which is to be handled by the application.
It can be either only shown, or also be editable by the user. This data layer is encapsulated by
a schema layer, which is a description of the format, in which the data is given. This could be
an XML Schema for an XML document (2.3), for example.

In the next layer, this data description is abstracted in an abstract schema layer. This ap-
proach allows to handle different data backends. For each supported data format a parser has
to exist that transforms the concrete description for a specific data format instance into an
abstract description.

On the same level there is also a hint layer, which allows to enrich the description with
additional information on parts of the data format. This is useful if the data description is not
sufficient in some parts, or a usability expert wants to influence the GUI generation process at
some point, e.g. change the label of a specific element.

With the abstract schema a GUI description is generated, which together with the hints
describes the elements of the GUI, their structure and data types.

Finally, a rendering application reads this GUI description and transforms it into a usable
interface. It is remarkable, that there are no restrictions on the type of the application or the
platform. So, the same GUI description could be rendered both in a native application and in

a web application, for example.

4.4 Components And Interaction 36

GUI Description

Abstract
Schema

Figure 4.1: Layers in GUI generation

4.4 Components And Interaction

Figure 4.2 on page 37 shows the components that are needed to cope with the tasks described
above. There is a “Storage” component, which is used to hold both the data that is to be
processed and the schema of this data. It does not matter where the data is located physically.
Both local files, remote data storage ore a combination of both is possible.

The schema is parsed in the “Schema Parser” component, which extracts potential hints and
transforms the data description into an abstract schema.

The abstract schema is processed further in the “GUI Description Generator”. The result is
a GUI description document which is referred to the “GUI Generator” part of the rendering
application. This component also retrieves hints from the “Schema Parser” or hints from the
“Storage* if there are any.

With this data, the final GUI is generated. The application can then be used to load, create
or modify data from the ”Storage*.

If the GUI has to be edited this can be done with the "GUI Editor* component of the appli-

cation. It will generate hints describing the changes, which can be either stored for later usage

4.4 Components And Interaction 37

or directly passed on to the "GUI Generator. The "GUI Generator then recreates the GUI

with the new hints.

GUI Generation Application
Usage
Application
GUI GUI
Generator| | Editor

GUI Description
Generator

Schema Parser

Storage

Figure 4.2: Components and Interaction

Chapter 5

The Kode Project

The prototype of this thesis was done by improving and extending the Kode project of KDE
[4]. It already provided some working parts for parsing schemas and generating GUIs when

this work was started.

5.1 Used Tools And Technologies

This section describes the tools and technologies that are used in this thesis.

5.1.1 The Qt Application Framework

Linux and Mac OSX are constantly gathering market share from Microsoft operating systems.
For software developers, that means that they either lose potential customers if they only
provide their software for one platform, or that they have to put extra work in porting their
applications. This issue is addressed by the C++ cross-platform application framework Qt4. It
rapidly decreases the porting effort. In fact, targeting a new platform just requires to compile
the sourcecode again.

Qt is developed by the Norwegian company Trolltech and released with two different li-
cences, a commercial one for companies that do not want to release the source code of their
applications and a free open source edition, which can be used by open source developers.

Besides the ability to create cross-platform applications Qt has many other advantages:

o Native Look-And-Feel

Qt applications keep the Look-And-Feel of the operating system. This makes the ap-
plication integrate into the desktop and lets the user feel comfortable (see Figure 5.1 on

page 39).

5.1 Used Tools And Technologies 39

Windows

Figure 5.1: Qt Architecture
Source: Introducing Qt (http://trolltech.com/products/qt)

e Wide variety of convenient classes and development tools

Qt offers classes for many tasks a software developer has to deal with. This includes
the core and GUI classes for the framework and graphical user interface components,
networking, XML, SQL, OpenGL and many more. It also ships with some tools that
simplifies the creation of high quality applications, such as an graphical GUI designer
and applications for translation and documentation.

e High performance

The Qt classes are deeply tested and optimized and all aspects of the framework perform
and scale very well. With Qt4 the speed was improved even further and the memory

footprint was decreased. Thus the developer gets a lean but fast application.

5.1.2 The KDE Desktop Environment

KDE is a desktop environment for Linux/Unix which is based on the Qt application framework
(5.1.1). Parts of the next version, KDE4, will also be available for Windows systems, which

is possible because Qt is also available as an open source edition for Windows since Qt 4.0.

5.2 Prior Work 40

KDE provides a complete working environment with applications for the most common tasks,
such as office applications, web browser, email client or games.

It also offers good documentation for software developers and the Qt basis, in combination
with very good API designs, makes it very easy to develop new applications. The Kode project
is also a part of KDE. In parallel however, a Qt-only version is developed. With the use of
compatibility classes the code does not have to be duplicated but both versions can be built
from the same code.

The idea behind the Qt only version is, that the functionality of Kode is also interesting for

Qt developers that do not want to depend on the KDE libraries.

5.1.3 Unit Testing

Handling and working with XML is a very fiddly task and changes even to small parts of
the implementation might have severe side-effects which are hard to spot and track. Thus,
the whole development phase was coupled with unit testing. So, after changes were made
to the implementation, it could be easily verified that all other parts were still functional and
working as expected. Therefore, some testing data and the expected result were defined. The
comparison of the actual results with the expected ones could then be easily and automatically
done within the QTestLib framework of Qt4.

5.2 Prior Work

This chapter lists the parts, that were already there when this work was started and describes

what they are used for.

5.2.1 Schema parser

Tobias Koenig has created a schema parser based on wsdlpull parser by Vivek Krishna. This
parser reads an XML file describing the schema of the data structure that should be handled

by the application and creates an object tree representing it. It is capable of

29 ¢

e parsing “elements”, “attributes” and “attributegroups”

29 ¢

e processing the complexity models “simple”, “complex” and “mixed”

99 ¢

e identifying the XSD types such as “string”, “integer”, “date”, etc.

29 46

e identifying the compositors “invalid”, “choice”, “sequence” and “‘all”

5.3 Formats 41

All further processing of the schema is based on the output of this parser, making it an

essential part of Kode.

5.2.2 kxml_compiler

kxml_compiler is a little tool developed by Cornelius Schumacher and Tobias Koenig, which
allows to create source code for editing data according to a schema description. It therefor
includes a wrapper library around the parser described in 5.2.1. This library consists of some
helper classes and two parsers, namely ParserRelaxng and ParserXsd. While ParserXsd is
used to represent XML-Schemas, ParserRelaxng represents RelaxNG schemas.

For this thesis, only the library was used in order to create an abstract representation of the
schema. Thereby, only XML-Schemas are considered, because they are far more widespread
than RelaxNG. kxml_compiler defines an own set of classes describing the elements of an
XML-Schema. Those elements are encapsulated in a document class which can then be pro-

cessed further.

5.2.3 KXForms

KXForms is a KDE application which uses the kxml_compiler library to fulfill two main tasks.
The first is to create a kxforms document from the schema document created by the wrappers
(5.2.2). Secondly it should create a graphical user interface from this kxforms document.
Basically, kxforms was able to create simple kxform descriptions and create simple GUTIs,
but it was also very buggy from the transition from Qt3 to Qt4 and often failed to create even

trivial schemas. Many parts, that are required for more complex schemas were missing.

5.3 Formats

Figure 5.2 shows the formats that are used in the implementation of the system described
in 4.3. As can be seen, all of the formats are based on XML. The input is usually given
as an XML Schema (2.3). The kxml_compiler and KXForms applications transfer it into an
kxforms document. Additionally, hints can be generated with an Editor mode, influencing the
appearance of the generated GUI.

The hints and the kxforms document together form the description of the GUI, which will
be instantiated by KXForms.

5.3 Formats

42

XML

hints

XML-Schema /

RNG

kxforms

XForms

Figure 5.2: Formats used in KXForms

Chapter 6

The kxforms Specification

In this chapter, the concepts and structure of the kxforms specification are presented. The
purpose of this specification is to define a format that can be used to describe GUIs in an
abstract matter, so that it can be rendered on different systems. It is based on the XForms
specification (see 3.3 for more information), but extends it with some elements and attributes
in order to allow more appealing applications on computer systems.

Elements that are derived from XForms are put into the “xf”’ namespace, which can be
identified with the “xf:” in front of the actual element name.

The kxforms specification was released with this thesis and can be downloaded from the

KDE subversion repository [5].

6.1 Structure

The kxforms description language is a dialect of XML, thus it can be used with existing XML
tools. The root element of an kxforms document is the kxforms element. This root element is
just an encapsulation element for the forms that exist in the GUI and an optional definition of
the defaults that are to be applied to them and their controls.

The properties of the kxforms controls are sanely chosen and should work for most use
cases. There are however some properties that need to be adapted if the underlying data struc-
ture has an unusual form, for example. This can be done globally with the defaults element.
Therefore, the desired properties are simply put inside this element and the application will
predefine the properties of all forms and controls with these values. Applicable are all proper-

ties of kxforms, as they are described in 6.1.3.

O 0 3 O L A W N —

6.1 Structure 44

6.1.1 Forms

A form in kxforms is a piece of GUI that represents a set of data that is needed for one working
stage. It is not required that it shows all of the data on the screen at once. In an application for
the management of a CD collection, there could be 2 forms, for example. The first one would
be used to show a list of all the CDs in the collection. The second form would appear if a CD
was selected and show all the information about that CD, such as the artist, title, year and so
on.

kxforms has a group concept, which means that elements can be assigned to groups. All
elements of one group logically belong together. The rendering application can take this
information into account when it positions the elements on the forms. If there are more than
one group and they don’t fit on the screen at once, the application can put them on different
tabs, several pages or similar, according to the type of application. The groups are defined
inside of the form elements as a groups element. There, the different groups are listed with

an unique id and a title, which can be used to identify the groups.

<form ref="feature'">
<xf:label>Feature</xf:label>
<groups>
<group id="">Feature</group>
<group id="other">0ther</group>
<group id="documentation">Documentation</group>
</groups>
</form>

Listing 6.1: Example group definition

If an element should belong to a certain group, it references the group id as described in
6.1.3.

After this list of groups, which is optional, the GUI elements on that form are listed. If
elements are not assigned to a group, they are ordered after the position in the XML document,
e.g. the second element will be positioned below the first one, the third below the second one
and so on.

If there are groups, it is ensured that all elements of one group are positioned contiguously.
In this case, the group which the first element in the XML file belongs to, will be the first

group shown and so on.

6.1 Structure 45

kxforms also provides facilities for positioning the elements inside of one group. The posi-

tioning concepts are described in more detail in 6.2.

6.1.2 Controls

A control or GUI element is represented by an XML node in the kxforms document. There are
many controls available for the most common data structures that are used generally. Most of
them are derived from the XForms specification and extended with kxforms specific attributes
or child elements.

Each control is related to an XML node in the underlying data XML document, which holds
the reference data, that is edited with the rendering application. This relationship is stated in
the ref attribute, which is a XPath expression to the according node. Every control may also
have a set of properties, which will override the global default properties. The properties are
listed in 6.1.3.

kxforms defines the following GUI elements:

e The xf:input Element

This element is derived from XForms. It is used as an input field which enables data

entry. Nothing is said about the type of the data, however, which is done with properties

0.

o The xf:textarea Element

This element is also derived from XForms. A textarea is used for free-form text data
and can contain arbitrary text. In contrast to the xf : input element it can also control

sequences, e.g. linebreaks.

e The 1ist Element

This element enables handling of lists of elements. The XForms list element can only
be used for a list with only one type of elements in it. For kxforms however, it was
important to also allow different elements in the same list, because this is crucial to
represent some data structures. An example is an item catalogue which is separated into
categories. Each category can then have a list of items which belong to it, but it might

also have subcategories.

Thus, a kxforms list can contain one or more types of elements which are specified by
the itemClass child element. One such element has to exist for each type of element

that can appear in the list. Besides the XPath expression to the XML node in the data

6.1 Structure 46

O 0 1 N U b W N =

10

12
13
14
15
16
17
18
19
20

document, it also contains the definition of what data of the element should be shown in
the list.

Therefor, one itemlabel element per column is added as a child of the itemClass
element. The label of the items can be either some static text, some data from inside the
element or a combination of both. This allows to polish the presentation of the data in
order to increase usability and readability. It is even possible to combine several fields
of the item in one column. The inclusion of item data is done with the itemLabelArg
element. It just references a node or attribute inside the element and it will be replaced
with the actual data in the list. This only applies to lists of ComplexType elements, as

with SimpleType elements, there is only one data field that can be shown in the list.

The headers of the columns can be defined using the headers child element. It just
contains a list of header elements giving the text for each of the columns that are used

within the itemlabel elements.

The following example shows the usage of the itemclass and headers elements. The
combination of static text and item data can be seen with the “version” column, which

prefixes the actual data with a “V” string.

<list id="list_productcontext" showHeader="true">
<xf:label>Productcontexts</xf:label>
<itemclass ref="/productcontext [1]">
<itemlabel><itemLabelArg ref="/product[1]/name[1]"/>
</itemlabel>
<itemlabel>V<itemLabelArg ref="/product[1]/version[1]"
truncate="40"/></itemlabel>
<itemlabel><itemLabelArg ref="/status[1]"/></itemlabel>
<itemlabel><itemLabelArg ref="/architecture[1]"/>
</itemlabel>
<itemlabel><itemLabelArg ref="/@legacyinfo[1]"
truncate="40"/></itemlabel>
</itemclass>
<headers>
<header>Product</header>
<header>Version</header>
<header>Status</header>
<header>Architecture</header>
<header>Legacy</header>

</headers>

6.1 Structure 47

21| </1ist> ‘

Listing 6.2: Example list definition

Productcontests | pyoqyct \ersion |Status |Architecture |Legacy

ENSUSE W10.0 done Some data
opensSUSE v10.1 done
opensuUSE v10.2 implementation
L. opensUSE V10.3 new

New [tem...] lDeI_ete Selected Item] [Edit Item... l [Mowe Item Up] [Mowe [tem Down

Figure 6.1: Example list

Lists can be customized to show or hide the headers and a filter bar using the showHeaders
and the showSearch attributes of the 1ist element. This can be useful for long lists. It

only shows the items of the list, which contain the given search string.

Figure 6.2 shows a list control which has both the headers and the filter bar activated.

Productcontexts [m]

|Product veersion Status Architecture | Legacy |
I

Figure 6.2: List control with headers and filter bar

o The section Element

The section element is used to visually encapsulate a set of elements. That is appropriate
when a complexType element with several child elements is shown, for example. This

will result in a less cluttered GUI.

o The xf:select Element

This element presents a set of options to the user and lets him select one or more of
them. The items are defined with xf:item child elements. There can be an arbitrary
number of items. They will be shown in the same order as they are listed in the XML
document. Each of the items has two child items: One defining the label of the item,
which is used in the GUI and an value, which is the data that will be used in the XML

document if this item is selected.

6.1 Structure 48

o The xf:selectl Element

This element is basically the same as the select element. The only difference is, that

it limits the number of chosen options to only one.

6.1.3 Control Properties

Controls can be customized in their appearance and behaviour. This can be done by adding a

properties child element to the control, which contains the property elements.

kxforms defines three different types of properties, which are explained in the list below:

e Common Properties

These properties are applicable to all controls and are behaviour properties.

—

The readonly Property

This property determines, whether an element can be edited by the user or not. If
it is false, the control behaves just as expected. If it is set to “true” however, the
control still displays its data, but it can not be changed. This state should also be
visually indicated by the application.

The relevant Property

Sometimes, parts of an XML document are only interesting if some condition is
fulfilled. If there is a document describing an order by a customer, for example, the
fields for the creditcard number and the expiration date of the card is only relevant,
if the payment method is set to “creditcard”. They have no effect if the payment is

done via bank transfer or account.

This can betransferredd to the according GUI element with the relevant property.
It contains a reference attribute, which points to the other element, the content of
which is to be watched. The condition is then given with a regular expression. If
the expression matches, the elements state is set to be writeable, if it does not, it is

set to read only.

The following example shows a solution to the scenario described above.

<relevant ref="/paymentmethod">creditcard</relevant>

Listing 6.3: relevant property example

e Input Properties

Input properties can be applied to input controls, being xf : input and xf : textarea.

6.1 Structure 49

— The type Property

This property defines the data type of a control. It defaults to “xs:string”, but all
data types that are defined in the XML Schema specification are possible. This
allows the application to verify that the data of the control is a valid entry for the

specified data type, e.g. that an “xs:integer” consists of digits only and so on.
Another advantage is, that the application can render specific controls for some
types. For an input control that expects “xs:integer”, it might show a SpinBox,
while for “xs:string” it would show a LineEdit.

— The constraint Property
The constraint property allows to define a regular expression that has to match
the content. If it does not match, the contents state would be invalid, thus prevent-

ing the form being saved.

The table below shows some use cases for this property and the according regular

expression.
Constraint Regular Expression
A number \dx
A number bigger than 2 | \d*[3 —9]|\dx[1 —9]\d+
“true true
A XML tag <[/IN\w+ >

e Layout Properties

Finally, the layout properties can be used to alter the appearance of controls on the

screen.

— The groupRef Property

This property defines to which group the control belongs. See 6.2 for more infor-
mation.

— The position Property
With this property it is possible to specify the position of an element inside of the
group.

— The appearance Property
This property tells the application how to render the control it is applied to. ”full*

indicates that all options should always be visible. “compact* means that an ade-

quate number of options should be shown at once while “minimal* should result

6.2 Element Positioning 50

in a presentation that always shows just one option at once and thus takes up the

minimum space.

Postponed v Postponed O Postponed
Dropped () Dropped
Information required N) ,
Done) Information required
Implementation () Done

) Implementation

Figure 6.3: Select] control with minimal, compact and full appearance

— The layoutstyle Property

Elements usually exist of two parts: The widget containing the actual data and a
label widget, showing a descriptivetitlel for the element. This element can be used
to change the way, the application should arrange these two widgets. There are
two options available:
* horizontal
If this option is chosen, the application should place the label widget left of
the widget.
* vertical
If this option is chosen, the application should place the label above the wid-
get.

6.2 Element Positioning

The format has to provide capabilities for positioning the GUI elements on the forms. The
structure in an XML-Schema file is completely arbitrary and no assumptions regarding a suit-
able representation in the GUI can be made out of it. It is sometimes necessary to change the
order or place some items next to others.

In this thesis, two approaches were evaluated. After the first one turned out to not suite
the requirements well, the second one was developed, addressing the issues. The following

sections describe the two approaches in detail.

6.2 Element Positioning 51

6.2.1 Static Approach

In a first approach an explicit position description for each element was used. That means,
that each element had a page-element defining the page the element has to be placed in case

of a multi-page form. Additionally the position could be specified by the position-element.

Page: first
Position: 1

Page: first
Position: 2

Page: first
Position: 3

Figure 6.4: Original Form - Static Approach

This approach however turned out to be too static for some use cases. If for example the
schema is extended by an element which should be placed in the middle of the form, many

other position elements would have to be updated, too.

Page: first
Position: 1

Page: first
Position: 2

Page: first
Fosition; 3

Page: first
Faosition; 4

Figure 6.5: Form After Extension - Static Approach

Another disadvantage was the fact that this way, elements could only be positioned in 1
dimension, which made it hard to create appealing GUIs sometimes. Those problems led to

the new, relational approach.

6.2 Element Positioning 52

6.2.2 Relational Approach

In the relational approach relations are used to describe the positioning between elements.

Group: person
Pasition; -

. Group: person
Ref: firstName

Position;
rightOf: firstName
rightOf: lastName

Fage: person
Ref: Pets

Position: -
Ref: lastName

Figure 6.6: Original Form - Relational Approach

As you can see in the example, the elements are no longer positioned on pages but they
are grouped together into the logic group “person”. The application can then decide if it is
necessary to place a group on another page or if there can be more than one group on it. This
depends on the number of elements in the group and their positions.

The same applies to the position. It is no longer defined as the absolute position of the
element on the page but the relations between elements in the group are described. In the
example above, the “Pets”-element is said to be placed right of the “firstName” element.

The elements have an “expanding® property which defines whether the elements fill avail-
able space or not. This property is set to true by default, thus the Pets“-element spans 2
rows. If this behavior is not intended, the “expanding* property has to be set to false. Then
the span can be defined by also specifying the lowest neighbour with a relation.

If the schema is now extended there is only one change to apply:

The following relations are supported:
e rightOf

Places the element right from the other element.

o leftOf

Places the element left from the other element.

e below

Places the element below the other element.

6.3 Group Positioning 53

Group: person
Paosition: -
Ref: firstName

Group: person
Group: person

o Position:
Posttion: rightOf: firstName
below: firstName rightOf: lastName

Ref: Age Ref: Pets

Page: person
Fosition; -
Ref: lastName

Figure 6.7: Form After Extension - Relational Approach

e above

Places the element above the other element.

If an element does not have any relation it is simply placed at the end of the form in the
first column. Thus, if there are no relations at all, all elements will be put on top of each
other in the same order as they are defined in the XML schema. This relation approach would
allow impossible descriptions, such as ”A rightOf B*“ and "B rightOf A“. The application
that is used to create or modify this should not allow such a state. If however, the description
was created manually for example and it contains an impossible relation, the instantiating

application should discard those relations and continue with the next relation.

6.3 Group Positioning

The Relational Positioning Approach, which was chosen over the Static one groups elements
in groups instead of absolute page positions. It is then left to the rendering application to place
each group on a own page or to place two are more onto the same page. 9.3

This behaviour can be influenced by providing a sizeThreshold property in the according
form element. The size of each group is calculated with some metric and compared to that
threshold. If the threshold is exceeded, the group should be placed on the next page.

The size of a group depends on the toolkit used, the appearance styles of the controls and

their positions. The size of the display also varies between different systems. So the calcula-

6.4 Hints 54

tion has to be done by the application and be adapted to the environment. This means, that the
size value has to be normed somehow.

In kxforms, the value of the sizeThreshold property is 100 by default. That means that a
GUI of one or more groups, that has a combined size of 100 should use the space perfectly,

e.g. fit on the screen but not leave much empty space.

6.4 Hints

Usually, a GUI that is generated only from the schema describing the data will not fulfill all
requirements on a modern user interface. Therefore, hints can be created by the developer or
usability expert and merged into the kxforms document in order to improve the presentation
of the GUIL

The hints can either be delivered as an extra file along with the schema description of the
data or it can be embedded into the schema document itself. While the combined document
eases the shipment of a GUI, the standalone hints document allows the dynamic modification
of an already shipped GUI. Consider an application that fetches a hints file from a server atstart

upp, for example.

6.4.1 Technique

A hint is an XML fragment and states a directive to the application, to change a property of an
element. Thus, the hint has to describe which element of the kxforms description it addresses.
This is done using a XPath expression (see 2.4).

The hint can now specify a property of the element and the value it should be overridden

with. There are two different types of hints available:

e Key-Value hints

This kind of hints is used to specify the value of one property. This is applicable to

simple type properties such as a label.

—_—

<hint ref="/title[1]">
2 <label>Title of the Feature</label>
</hint>

W

Listing 6.4: Example of a Key-Value hint

6.4 Hints 55

o Valuelist hints

There are however properties that can not be described with one value. Therefore, this
type of hint can be used. The content of the hint is again an XML fragment. The parent
XML element describes the property that is changed. This element can then have a list

of values as child elements.

1| <hint ref="/title[1]">

2 <position>

3 <right0f>/description[1]</right0f>
4 <above>/list_actors [1]</above>

5 </position>

6/ </hint>

Listing 6.5: Example of a valuelist hint

GUI Element

Figure 6.8: Hint architecture

6.4.2 Implemented Hints
Hints Modifying The Displayed Data

The plainest and probably most common modification, a developer or GUI-designer wants to
do is changing the data that is shown. The following list will describe the hints that make such

changes possible.

e label

Usually an element is labeled with its “name” attribute. In some cases these attributes

might be abbreviations, non-readable ids or simply not understandable enough so that

6.4 Hints 56

w N =

W N =

it is advisable to display a different label in the GUI. That can be achieved using the
label-hint.

This hint simply overrides the automatic label generation mechanism and defines the

label of the specified element.

<hint ref="needinfo">
<label>Information required </label>
</hint>

Listing 6.6: label hint

ref defines the element of the XML-Schema this hint should be applied to
label specifies the label that should be applied

This example would change the displayed label of the “needinfo” element from “need-
info” - or the automatically generated “Needinfo” if the rendering application supports
humanization of strings - to “Information required”.

appearance

This hint modifies the “appearance” property of an element.

<hint ref="/status[1]">

<appearance>full</appearance>
</hint>
Listing 6.7: appearance hint
layoutStyle

This hint modifies the “layoutStyle” property of an element.

<hint ref="/status[1]">
<layoutStyle>vertical</layoutStyle>
</hint>

Listing 6.8: layoutStyle hint

Behavioural Hints

readOnly

This hint modifies the “readOnly” property of an element.

6.4 Hints 57

W N =

—

<hint ref="/status[1]">

<readOnly>false</readOnly>
</hint>
Listing 6.9: readOnly hint
inputType

With the ”inputType* hint, it is possible to override the data type of an Input element.

<hint ref="/duration[1]">
<inputType>xs:integer</inputType>
</hint>

Listing 6.10: inputType hint

Positioning hints

AN N AW N =

w N =

groups

The groups hint can be used to define a set of element groups where the elements can

be put into.
<hint ref="/feature">
<groups>
<group id="feature">Feature</group>
<group id="documentation">Documentationstatus</group>
</groups>
</hint>
Listing 6.11: groups hint
groupRef

This hint puts an element into a specific group

<hint ref="/duration[1]">
<groupRef>feature</groupRef>
</hint>

Listing 6.12: groupRef hint

6.4 Hints 58

AN U AW N = []

—_—

position

With this hint a relational position description of an element can be created.

<hint ref="/title[1]">
<position>
<right0f>/description[1]</right0f>
<above>/list_actors[1]</above>
</position>
</hint>
Listing 6.13: position hint
formSizeThreshold

This hint sets the size threshold of a form, which is used to determine the placement of

the groups.

<hint ref="/feature">

2 <formSizeThreshold>120</formSizeThreshold>
3] </hint>
Listing 6.14: formSizeThreshold hint
List hints

There are two different types of lists, lists of simple elements and lists of composited elements.

Simple type lists are straightforward and show the content of the elements. In the case of

complex elements however, there are many possibilities to modify the appearance of the lists.

The following list describes those possibilities and the corresponding hints.

listItemLabel

KXForms is capable of presenting lists of elements. Usually, the elements are simple
elements which can be shown in the list directly. If the elements are complex elements,
it is important to show a subelement in the list which describes or identifies the element
best.

If no further information is given, KXForms chooses the first simple element. This
might not always be the best choice, so it can be overridden using the 1istItemLabel
hint.

6.4 Hints 59

1| <hint ref="/product[1]">

2 <listItemLabel>Version <itemLabelArg ref="/Qversion[1]"
3 truncate="40"/></listItemLabel>

4| </hint>

Listing 6.15: ListItemLabel hint

e listShowSearch

This hint sets the filter bar to visible or hidden. Showing the filter bar is advisable
for lists which contain many entries, so that filtering for a string might help finding a

specific item.

[u—

<hint ref="list_productcontext">

\

<listShowSearch>true</listShowSearch>
</hint>

98]

Listing 6.16: listShowSearch hint

e listShowHeader

By default, the headers of lists are hidden. In most cases it is not necessary to describe
the data that is shown because it is either the content of the elements itself or in cases

complexTypes a descriptive subelement, eventually chosen with a 1istItemLabel hint.

Sometimes it still might be necessary to show the header, for example if the list has more
than one column. That can be achieved using the 1istShowHeader hint as demonstrated

below.

—_—

<hint ref="list_productcontext">

[\

<listShowHeader>true</listShowHeader>

3] </hint>

Listing 6.17: listShowHeader hint

e listHeader

The listHeader hint lets one override the label of a column in a list, e.g. if the auto-

matically generated one is not understandable.

1| <hint ref="/status[1]">

2 <listHeader>Feature status</listHeader>

6.4 Hints 60

3] </hint>

Listing 6.18: listHeader hint

o listItemList

The listItemList hint can be used to mark a type of list item as a list item. That

means, that it contains other elements, which can be shown by expanding this item.

[u—

<hint ref="/category[1]">

\S)

<listItemList>true</listItemList>
</hint>

W

Listing 6.19: listItemList hint

[u—

W N =

Chapter 7

Generation Of The kxforms Document

Generating a kxforms document only from a schema, which describes the underlying data,
is a hard task. The application has to provide a lot of intelligence, in order to create a GUI
description which picks the right amount of detail of the data that will be shown and also
shows it appealingly.

This chapter describes the different cases it has to consider and how they can be handled.

7.1 Forms

Before the application can translate the single elements, it first has to detect how many and
which forms it has to provide. It therefor resolves the XML schema by following the refer-
ences in it. Elements, which are part of another element, but can not be entirely shown on its
form are appended to the root as a new element.

This results in a tree which contains the elements according to their relations. The nodes

connected to the root are the elements which need an separate form.

7.2 SimpleType Elements

The easiest type of data are SimpleType elements. They can simply be translated into the

corresponding kxforms elements according to the type attribute.

<xs:element name="email" type="xs:string">

for example would be translated to

<xf:input ref="/email [1]">
<xf:label>Email</xf:label>
</xf:input>

7.4 Lists 62

with the ref attribute pointing to the “email” element in the XML document accordingly.
The label is generated automatically by inspecting the name attribute of the element. Usu-
ally, the first character is simply made uppercase. In cases, where the element denotes a plural,

the application can try to convert it to plural form. If the label ends on *“y” for example, it is

turned into “ies”.

7.3 ComplexType Elements

With ComplexType elements, the application inspects the elements that are contained. If the
element contains only one child, the according element is created. If there are more than one,
a section element is created at first, encapsulating all sub-elements. All child elements are

then put into this section.

7.4 Lists

Defining a list from the XML Schema only can be a hard task. If the datatype of the list is a
SimpleType, the list consists of just one column and the data that is shown in the list, is just
the data of the XML elements itself.

If the data is a ComplexType however, there are several decisions that need to be made:

1. Which and how many columns to show

Lists can have either one column, which makes it a plain list, or more than one, resulting
in a table. On the one hand, it is desirable to present as much information in the list as
required in order to identify the list items at first glance. On the other hand the GUI gets
cluttered and overcrowded if there are too many columns. If there are several candidates
available that could be shown as columns in the list, the application has to pick the more
relevant ones. Mostly, the attributes are less interesting to show than other elements.
But if the element is named “name* for example it for sure is important and should be

shown in any case.

Therefore, the application scans the data structure of the list item. At first, it only
considers elements on the first level and does thereby not include attributes. Note that

only SimpleType elements or ComplexType elements with a SimpleContent can be used.

If this scan fails, that means no element could be found, another scan is started on
the first level, but this time includes the attributes, too. If this scan also finds no ele-

ments/attributes, or there were only attributes, but none of them was a “name” attribute,

7.4 Lists 63

the procedure is started again but is extended to the second level. This means that if the
list item contains a ComplexType, it is scanned for applicable elements as well. This
time, it requires 3 elements to be found overall. If there were still not enough elements,

the third level is added, too. If it still is not able to find elements, the application stops.

To recapitulate the application will show only all elements on the first level, or the
“name” attribute if there were no elements. If there is also no “name” attribute, it collects
3 elements from the second level or also adds the elements of the third level if there less

than 3 elements on the second level.

2. Text of the columns

The text that is shown in a column, usually is just the content of the corresponding
element. In case of elements which are likely to have a long content, the “truncate”

attribute is set to 40 chars, e.g. with textarea elements.
If the list contains more than just one type of items, the name of the according element
is prepended. That makes the items more easy to recognise.

3. Header of the columns

Additionally, after the columns have been chosen, the headers of the columns have to
be defined. This is done the same way as with the label of an element using the name

attribute.

Chapter 8

The KXForms Application

The KXForms application can be used to both generate a kxforms document from a schema
and to create a GUI from such a description and thus covers the whole workflow from the

schema to the GUI. This chapter presents the prototype application in detail.

8.1 Use Cases

The KXForms applications can be used to

e Create a GUI for editing XML data
It is capable of generating a GUI for a given XML schema and load some data for further
processing. It is also possible to additionally load hints, which polish the appearance of
the GUI.

e Create a kxforms document from a schema
It follows the directive that are described in 7. The kxforms document can be either
exported as a file for later usage or can be stored only in memory and be used to generate
a GUI from it directly.

e Generate a GUI from a kxforms document
KXForms can use a kxforms description and render it into a usable GUI, which can then
be used to load, edit an save the corresponding data.

e Modify a GUI

Finally, the prototype application can be used to modify a rendered GUI and generate

the corresponding hints. This mechanism is presented in more detail in 9.

8.2 Architecture 65

It is also possible to create a library from this application, which could be embedded
into other applications in order to create parts of the GUI dynamically. This was not

part of this work and thus is not yet implemented.

8.2 Architecture

Figure 8.1 on page 67 shows a class diagram of the classes involved. For parsing of the XML
schema, KXForms uses kxml_compiler (5.2.2). It is a wrapper around another schema parser
(5.2.1) and transforms an XML schema into a data structure.

This data is further processed in a FormCreator instance. This class takes such a parsed
XML data structure as input and translates it into a kxforms document. See 7 for more infor-
mation about the challenges it faces.

Finally, this kxforms document is loaded into the Manager. There is one instance of this
class, which functions as the central coordinator of the whole application workflow. The
Manager then parses the document and stores the individual forms in Form objects (parseForms ()).
They hold the description of the form and some information about the relation to the underly-
ing data.

The actual GUIs are instantiated on demand, that means only if they are to be shown on the
screen. In order to generate the GUI of a form, the Manager asks a GuiHandler to create a
FormGui object (createGui()). It is possible to create different GuiHandlers, which will
generate different GUIs. That is possible, because the FormGUI uses the GuiHandler to create
the layout of the GUI. It for example calls a method of the GuiHandler, that places a widget
onto the current layout (addWidget ()). Thus, it is possible to modify the general style of an
application by using the desired GuiHandler.

The FormGUT retrieves the kxforms snippet from the corresponding Form object and creates
and places the elements. The abstract base class of these elements is the GuiElement class.
This class is derived from the widget base class of the Qt framework, QWidget, and thus is the
actual representation of that element in the GUI. These objects additionally have information
about the element, such as its properties, the applicable editor actions (see 9) or the tooltip and
so on. There is one derived class of GuiElement for each type of control, that kxforms offers.

Finally, the GuiHandler registers the created FormGui with the Manager (registerGui()),
so that it is aware of all forms. That is needed for managing the data flow inside the applica-

tion, showing the currently needed form and for the edit mode, which is described in 9.

8.3 GUI Generation Details 66

8.3 GUI Generation Details

When the generation of the kxforms document succeeded or the KXForms application is given
an already existing document, it has to create a GUI for this description. It traverses the XML
tree and creates a GUI element for each kxforms element, taking care of the positioning of the
elements.

That means, that it can not put the elements into a layout right after they were created.
Instead, a list of the elements is created. When an element is to be created, which has a
relative position to an already existing element, it is not put at the end of the list but at the
desired position according to the provided positioning information. If all elements are handled
and correctly sorted, they can be finally put into a GUI layout.

The application also has to respect the sizeThreshold which is set for the current form. That
means it has to calculate the space of each group and if the threshold is exceeded, it has to

create another tab and put the group there instead of on the current tab.

8.3 GUI Generation Details 67
kxml_compiler
1. ParserXML generates | |
abstract Schema
2L Fcrr'mc_r'ea_ltor generates | eTerer e ey
GUI description
Manager 1 1
3. Manager handles GUI o Editor
generation + par_seForm_s{] -m_manager -m_editor
+ registerGui() - -
1 N -Tn_manager
-m_guiHandler
1.% / .mGuis ! -d
GuiHandler
Form FormGui T createcul])
+ addwWidget()
1.* | -mGuiElements /\7 V\
GuiElement GuiHandlerFlat | |GuiHandlerDialogs

PN

Input | | Selectl || TextArea

Figure 8.1: Class diagram of KXForms

Chapter 9

Live Editing Of GUIs

As already stated in previous chapters, the generated GUIs do not always match all require-
ments in terms of usability and layout. When the kxforms description was generated and a
GUI instantiated from it, the developer or usability expert might notice things that should
better be changed. This can be done with hints (see 6.4 for more information).

This chapter presents an implementation that allows the convenient generation of those

hints.

9.1 Required Functionality

KXforms should provide an integrated editor mode that can be enabled at runtime and which
should be able to edit the GUI in its current state. This editor mode should provide facilities
to edit the interface in WYSIWYG style, in order to enable non-technical usability experts or
first-time users to achieve appealing results. The result of such an editing process should be a
file containing the hints that are sufficient to transform the automatically generated GUI into
the modified state by the editor.

The editing mode should support the generation and modification of all hints that are de-

scribed in the KXForms specification [5].

9.2 Architecture

The editor of KXForms lives in its own subdirectory editor/. It can be divided into three

major parts:

9.2 Architecture 69

Editor

Editor

GuiElement

KXForms

Figure 9.1: Editor Architecture

e The Editor

The Editor itself is the central instance of the editing mechanism. It coordinates the
editing process and forwards the generated hints to the application, which will use them
to rebuild the GUI. It also knows all GUI elements so that it can switch each of them

into editing mode when activated.

The Editor resides between the main application interface - the Manager - and the edi-
tor’s internals, specifically the Editor Widget which is described below (see Figure 9.1).
The Editor object is created when the editor mode is activated. It then retrieves the cur-
rently shown GUI part from the manager and propagates the elements of this GUI to the

editor widget, which uses this information to draw an interface for the user.

The Editor has a function actionMenu(GuiElement *e) which can be used to gen-
erate a menu for a specific element of a GUI. The Editor examines the capabilities of the
GUI element and adds the according actions to the menu. This allows to have different

actions for different types of elements. A list for example has an action that allows to

9.2 Architecture 70

hide the headers while an element that allows the user to choose one option out of sev-
eral possibilities has an action that can be used to set the appearance to use a checkbox,

a list or radio buttons. A list of implemented actions is given in 9.4.

Figure 9.2 shows two different generated action menus. At the top of the menu there are
the generic actions that are applicable to all GUI elements. If appropriate, these actions
are followed by a separator and the specific actions. In the left example there is an action
that lets the user modify the properties of a list element while on the left the appearance

of a select element can be modified.

Change Layout Style Change Layout Style

Change ReadOnly Mode Change ReadOnly Mode

Change Position

Change Group Change Group

Change List Properties Change Appearance
Action menu for a list Action menu for a

select element

Figure 9.2: Generated Action Menus

The Editor has a slot applyHint (const Hint &h) to which the Editor Actions are
connected. Whenever a hint is propagated through this slot, the Editor merges the hints
with the already existing list of hints and triggers a rebuild of the GUI with the latest
changes.

e The Editor Widget

The Editor Widget is the visible part to the user of the editor mode. It is a widget
which provides access to the features that the Editor provides. The widget is placed
on top of the actual GUI that it represents when the edit mode is active. It only exists
as long as the editor mode is active. In order to increase usability, the Editor Widget
is semi-transparent, thus both exposing the underlying original GUI and indicating that
the the edit mode is active. It then offers the user functionality by drawing additional

information on top of it (see Figure 9.3).

There are two different types of interfaces:

9.2 Architecture 71

P © O KxForms -

File Custom Settings Help

Di—iﬂ@ﬂ

New ©Open Save

Tabbed Groups

Feature

Global Interface

Feature | Documentation & Other

Categories

i New Item...] [Q&Iete Selected Iteml [Edit Item...

Hitle[1]

Description * * \

Actors | actor ‘

Interface to
EditorActions

Group information

< J 1)

New ltem...] [De[ete Selected Iteml [Edit ltem... I [Move Iterm Up] iMuve [tern Down

Figure 9.3: Screenshot of Editor

— Global Interface

The kxform specification defines some global settings, which can be changed with
this interface. This includes the default values for the appearance, layout style and
read-only property for example. The groups that are available on a form can also

be specified here.
Another value that can be set is the size threshold for the form. This threshold is
used to determine how many groups can be placed on one form.
Other options are available for saving and exporting the generated hints and for
displaying the current list of hints.

— Interface for a specific element
There is also one interface per element. It currently only shows the available ac-

tions for the according element, but one might also think of a list, showing the

hints for the element etc.

9.3 The Editing Process 72

The Editor Widget also draws semi-transparent overlays enclosing the elements which
belong to the same groups. This makes it easier to understand the relations between the

elements and eases the logical separation of elements into groups.

e The Editor Actions

An Editor Action applies a change to a specific GUI element and generates the corre-
sponding hint for that change. It might ask for additional information from the user.
The Editor Actions are offered to the user by the Editor Widget and when all required
information is gathered, it propagates the generated hint to the Editor which will trigger
a rebuild of the GUL

9.3 The Editing Process

When the edit mode is activated, the Editor communicates with the Forms Manager in order to
retrieve the current FormGui. A FormGui is the object in the system’s memory, representing
the GUI that is currently shown in the application. This object is aware of all information
about the GUI and the underlying XML document, e.g. the XPath expression leading to the
relevant XML fragment and the GUI elements that exist in this GUI.

The Editor now creates an EditorWidget, with a pointer to the FormGui. Thus, the Editor-
Widget can retrieve the list of GUI elements that are relevant for the editing process.

Each of these GUI elements is derived from QWidget, the base widget class of the Qt
Toolkit. Thus, the Editorwidget is able to calculate the exact position of the elements on the
screen.

As stated above, the EditorWidget forms a transparent layer above the actual GUI. With
the geometry of the elements, it can simply draw the editing interface on the widgets. The
interface is not static, however.

In the idle state, the application waits for the user to choose the element which should be
edited. Thus, it draws the references of the elements, so that they can be easily identified.
Additionally, the existing groups are visually highlighted. This is important at a later point in
the process, which will be explained later.

If an element is hovered, a button with an edit symbol appears. If the button is pressed, the
EditorWidget asks the Editor for an action menu which offers all available EditorActions for
the corresponding element. Therefor, the GUI element has flags for the relevant action groups.
When the user made the choice and selected one of the actions, the EditorWidget propagates
the choice to the Editor.

9.4 List Of Implemented Editor Actions 73

The Editor in return invokes the desired EditorAction with the reference of the chosen el-
ement. The EditorAction might perform additional tasks in order to generate the hint for the
desired change. When the hint is created, it is propagated to the Editor again.

The new hint is then merged with the already existing hints and the Manager is triggered to
rebuild the GUI with the new set of hints, resulting in the GUI with the new change applied.

The user can export the currently underlying kxforms document or the set of hints from
within the edit mode, too. These files can then be used later to recreate the GUI with the hints
or to simply use the kxforms document directly instead of creating it from the schema and the
hints again.

Both types of exports have advantages and disadvantages which are shown in the table

below:
kxforms Document Set of Hints
+ standalone usage + can adopt changes of the schema
+ fast application start up - longer start up time
- inflexible with regard to schema changes | - schema required at runtime

9.4 List Of Implemented Editor Actions

e ChangeLabelAction

This action is used to change the label of an element. The label is the text that is
shown next to the element and which should describe its content. This is often required
since the quality of the automatically generated label from the schema is often not good

enough.

o PositionAction

The PositionAction can be used to position an element on the GUI. The layout is de-
scribed with relations between the elements, so this action asks for the neighbour and
the type of relation, being one of ”Above”, "RightOf”, ”Below” or "LeftOf”.

e LayoutStyleAction

With the LayoutStyleAction the editor can choose the layout style between “vertical”
and “horizontal”, placing the label and the widget of a GUI element either above or next

to each other.

9.5 Working With The Editor 74

e GroupAction
This action allows to define the group to which the element should belong. The groups
have to be defined in the global interface first, before they can be applied to an element.
e ReadOnlyAction
The ReadOnlyAction lets one set the read-only property of an element. The content of
an element can only be changed by the user if the read-only property is set to false.
e InputTypeAction

The InputTypeAction is specific to input elements. With this action, the type of an input
element can be defined. The type describes which kind of data the user can provide
using this element. If the type is ”xs:string” for example, the application would show a

lineedit, while if it is ’xs:integer” a spinbox would be appropriate.

e AppearanceAction

The AppearanceAction is specific to select and select-one elements. It defines how
much space such an element should take up, e.g. if all options are shown at once or only
a subset or even only one at a time.

e ListAction

This action is specific to lists and lets the editor set options such as if the headers or a
filter bar should be shown.

9.5 Working With The Editor

This section describes the typical steps that need to be taken in order to apply a change to a
GUIL:

1. Navigate to the piece of GUI you want to edit

After the application has been started, the editor mode can be switched on/off via the
settings menu or a button in the editor toolbar. Whenever the edit mode is active how-
ever, it can no longer be navigated through the GUI, so the edit mode has to be activated

at the place where the changes are to be applied.

2. Select an action for the desired element

9.5 Working With The Editor 75

In the next step, the according element is chosen and the menu requested by clicking on
the edit button that is shown on top of the element. This menu will contain all applicable

actions for this element.

3. Provide required information

In the final step, the user has to provide the required information for the action. That
information differs between the different actions and ranges from providing a simple

label for an element to filling a complete dialog of information.

4. Repeat or export hints or kxforms document

The user can then repeat the process from step 1 or export the generated GUI. The export

can happen either in form of a kxforms document or as a set of hints.

Chapter 10

Case Study: The KDE Feature Plan

The KDE Feature Plan [2] holds all features that are planned to be implemented in future
versions of KDE. Each feature has a summary, describing the feature, a target KDE version
and a status, telling the process of this feature. Additionally, a list of responsible persons can
be added in order to tell who is responsible for the implementation.

This data is represented as XML, so that it can be validated against an XML-Schema and
be transformed into a HTML page using XSLT for example. This also qualifies it to be used
with Kode. This chapter describes the steps taken to create an appealing GUI for the Feature
Plan.

10.1 Generating A kxforms document

The XML Schema for the Feature Plan looks as follows:

1| <?xml version="1.0" encoding="UTF—8"7>

2|<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema”
3| elementFormDefault="qualified”

4| xmlns:ugh="http://www.kde.org/standards /ugh/0.1” >

5

6| <xs:element name="features”>

7| <xs:complexType>

8 <xs:sequence>

9 <xs:element maxOccurs="unbounded” ref="category”/>
10 </xs:sequence>

11 </xs:complexType>

12| </xs:element>

13| <xs:element name="category >

14| <xs:complexType>

15 <xs:choice minOccurs="0" maxOccurs="unbounded”>

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

10.1 Generating A kxforms document

77

<xs:element ref="feature”/>
<xs:element ref="category”/>
</xs:choice>
<xs:attributeGroup ref="attlist.category”/>
</xs:complexType>
</xs:element>
<xs:attributeGroup name="attlist.category”>
<xs:attribute name="name” use="required”/>
</xs:attributeGroup >
<xs:element name="feature >
<xs:complexType>
<Xs:sequence>
<xs:element minOccurs="0" ref="summary”/>
<xs:element minOccurs="0" maxOccurs="unbounded” ref="responsible”/>
</xs:sequence>
<xs:attributeGroup ref="attlist.feature”/>
</xs:complexType>
</xs:element>
<xs:attributeGroup name="attlist.feature”>
<xs:attribute name="status” default="todo”>
<xs:simpleType>
<xs:restriction base="xs:token”>
<xs:enumeration value="todo”/>
<xs:enumeration value="inprogress”/>
<xs:enumeration value="done”/>
</xs:restriction >
</xs:simpleType>
</xs:attribute >
<xs:attribute name="target” use="required”>
<xs:simpleType>
<xs:restriction base="xs:token”’>
<xs:enumeration value="3.4"/>
<xs:enumeration value="3.5"/>
<xs:enumeration value="4.0"/>
</xs:restriction >
</xs:simpleType>
</xs:attribute >
</xs:attributeGroup >
<xs:element name="responsible”>
<xs:complexType>
<xs:attributeGroup ref="attlist.responsible”/>

</xs:complexType>

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

10.1 Generating A kxforms document

78

</xs:element>

<xs:attributeGroup name="attlist.responsible”>

<xs:attribute name="name”/>

<xs:attribute name="email”/>
</xs:attributeGroup >

<xs:element name=""summary”’>

<xs:complexType mixed="true”>

<xs:choice minOccurs="0” maxOccurs="unbounded”>

<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element

</xs:choice>

ref="1"/>
ref="a”/>
ref="b"/>

ref="em”/>
ref="strong”/>
ref="br”/>

</xs:complexType>

</xs:element>

<xs:element name="1

LT}

type="xs:string”/>

<xs:element name="b” type="Xxs:string”’/>

<xs:element name="em” type="xs:string”’/>

<xs:element name="strong” type="Xxs:string”’/>

<xs:element name="br”>

<xs:complexType/>

</xs:element>

<xs:element name="a">

<xs:complexType mixed=""true”>

<xs:attributeGroup ref="attlist.a”/>

</xs:complexType>

</xs:element>

<xs:attributeGroup name="attlist.a”>

<xs:attribute name="href”/>

<xs:attribute name="title”/>
</xs:attributeGroup >

</xs :schema>

Listing 10.1: XML Schema of the Feature Plan

The root element of the data structure thus is the features element. It consists of a list of

categories. Each category can in return contain features and/or categories. A feature consists

of a summary and a list of responsibles. Both categories, features and responsibles also have

some attributes.

O 00 1 N Lt B W N —

e T e T e e T e
AN N B W= O

O 00 1 O Lt B W N —

—_— =
N = O

13
14
15
16
17
18

10.1 Generating A kxforms document 79

Besides the basic XML Schema features, this example schema also contains restrictions,
for example in the status attribute of the feature element.

Some example data is shown below:

<features>
<category name="KDE_PIM.(Personal_Information._Management)” >
<category name="Kontact” >
<feature status="done” target="4.0" >
<summary>Merged configuration view.</summary>
<responsible email="Kretz@kde.org” name=""Matthias_Kretz” />
</feature>
<feature status="todo” target="3.5" >
<summary>Add alternative tab—based viewmode.</summary>
<responsible email="molkentin@kde.org” name="Daniel _Molkentin” />
</feature>
<feature status="inprogress” target="3.5" >
<summary>Fix sidebar to use other icon sizes</summary>
<responsible email="molkentin@kde.org” name="Daniel _Molkentin” />
</feature>
[...]

Listing 10.2: Excerpt from a Feature Plan

The automatically generated kxforms document from the KXForms application is given

below:

<kxforms>
<form ref="features”>
<xf:label>Features</ xf:label>
<list id="list_category >
<xf:label>Categories</xf:label>
<itemclass ref="category[1]”>
<itemlabel><itemLabelArg ref="@name[1]” truncate="40"/></itemlabel>
</itemclass>
<headers>
<header>Category</header>
</headers>
</list>
</ form>
<form ref="responsible”>
<xf:label>Responsible</xf:label>
<attributes>
<xf:input ref="@name[l]”>
<xf:label>Name</ xf:label>

19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

10.1 Generating A kxforms document

80

</ xf:input>
<xf:input ref="@email[1]”>
<xf:label>Email</ xf:label>
</xf:input>
</ attributes>
</ form>
<form ref="feature”>
<xf:label>Feature</xf:label>
<attributes>
<xf:selectl ref="@status[1]”>
<xf:label>Status</xf:label>
<xf:item>
<xf:label>Todo</ xf:label>
<xf:value>todo</xf:value>
</xf:item>
<xf:item>
<xf:label>Inprogress</xf:label>
<xf:value>inprogress</xf:value>
</xf:item>
<xf:item>
<xf:label>Done</ xf:label>
<xf:value>done</xf:value>
</ xf:item>
</xf:selectl>
<xf:selectl ref="@target[1]”>
<xf:label>Target</xf:label>
<xf:item>
<xf:label>3.4</xf:label>
<xf:value>3.4</xf:value>
</xf:item>
<xf:item>
<xf:label>3.5</xf:label>
<xf:value>3.5</xf:value>
</ xf:item>
<xf:item>
<xf:label>4.0</xf:label>
<xf:value>4.0</xf:value>
</ xf:item>
</xf:selectl>
</ attributes>
<xf:textarea ref="/summary[1l]”>
<xf:label>Summary</xf:label>

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

10.1 Generating A kxforms document 81

</xf:textarea>
<list id="list_responsible” showHeader="true”>
<xf:label>Responsibles</xf:label>
<itemclass ref="/responsible[1]”>
<itemlabel><itemLabelArg ref="/@name[1]” truncate="40"/></itemlabel>
<itemlabel><itemLabelArg ref="/@email[l]” truncate="40"/></itemlabel>
</itemclass>
<headers>
<header>Name</header>
<header>Email</header>
</headers>
</list>
</form>
<form ref="category”>
<xf:label>Category</xf:label>
<attributes>
<xf:input ref="@name[l]”>
<xf:label>Name</ xf:label>
</xf:input>
</attributes>
<list id="1list_feature+category ™
<xf:label>Item</ xf:label>
<itemclass ref="/feature[1]”>
<itemlabel>Feature: <itemLabelArg ref="/summary[1]” truncate="40"/>
</itemlabel>
</itemclass>
<itemclass ref="/category[1]”>
<itemlabel>Category: <itemLabelArg ref="/@name[l1]” truncate="40"/>
</itemlabel>
</itemclass>
<headers>
<header>Feature</header>
</headers>
</list>
</form>
</kxforms>

Listing 10.3: Generated kxforms Document

KXForms generated a kxforms document which contains 4 forms: features, category,
feature and responsible. This is sufficient to display all information described by the

schema.

10.2 Generating A GUI 82

The relations between the kxforms description and the XML Schema are clearly visible.
The list of categories in the features element in the schema was mapped to a 1ist element
in the kxforms document. The list control contains one itemclass element which references
the category. With the header element, the mapping of this element is complete.

The same correlation can be found at the other elements, too. Thus, the generated document

is just another description of the given XML Schema.

10.2 Generating A GUI

The GUI that is shown after running KXForms with the generated document can be seen in
Figure 10.1.

There is one piece of GUI created for each of the forms. There are no tabs, as the different
elements are all nested and thus can not be displayed at the same time.

While this GUI is quite good and appealing, there are still some improvements that could

make the GUI better. These are described in the next section.

10.3 Tweaking The GUI

83

FME Teste e ature: | - KXForme =

B _ O nlelimomelkde-develikdepimked

Eile Custom Settings

- B

QOpen Sawve

Hep

48

New

Featires

x P -5 menw

File Custom Setings Help
7 - = M
New ©Open Save -

Features | Category

ymerkde-devell kdepimiko rmefestsleatur: | - KXForms = *

Calegories | - KDE PIM (Personal Informatan Management .

[

NEN

Name

“DE PIM (Personal Infarmation Management

-8

2egary: KOrganger

- Calegary. KRilob

= CEtegory: Kalam
CETEqOry KA

- Categary. KMoles
CEtegory: Kitchensync

- Carqary: KMade

- Category. KaddressBook

=i

B

et

Hew ltem | |Delete Selected em | | Zdititem | [Move fem Up | [Move ftem Dovn

Hewlem | |Delst Selected fem| | Editiem . | |Move fem Up | [Move ftem Down

ou oM

N;u Open Save

28

Features f Calegon f Cateqony / Feature

Elle

Hew

Featu

Back

*®

ymelkd e-dewvellkdepim/k

rme <2=

Custern Seftings Hep

- B Wi U

QOpen Save
res f Categony f Calegony £ Eeature / F

Ly

Status | Dong |
Targes |4 a | -
SUMMmany

Merged canfigarsion weaw

Responsibles Responsitie

- Malthizs Krelz

| Responsible
krelz@kde org

Mewliem | |Delete Selectedfter | Edfitem . Move femUp | | Move frem Dean

e

Ermail

watthias kKrek|

Hrekzikde.org

Back

Back

Figure 10.1: KDE Feature Plan GUI

10.3 Tweaking The GUI

In the “Feature” GUI, there are two ComboBoxes, one for the status and one for the target of

the feature. KXForms has put these controls on top of each other. The ComboBoxes do not

10.3 Tweaking The GUI 84

DN A~ W N =

look good, however, if they span the whole width of the form. Thus, it would be better to place

they next to each other.
Therefore, the GUI is navigated to the “Feature” form and the edit mode is activated (see

Figure 10.2).

Ftatus [Todo =
[rarget [3 4 B

Figure 10.2: Editing the Feature Plan 1

Then, the “target” ComboBox is dragged and dropped onto the “status” ComboBox, initi-
ating a PositionAction editor action. The editor then asks for the new relative position of the

control, which is answered with “rightOf”. The result can be seen in Figure 10.3.

Status ITOdO ‘-] Target |3_4 ‘-]

Figure 10.3: Editing the Feature Plan 2

Another change that was made to the GUI is the change of the label of the name attribute of

the category element. The generated one was “Name”, the new one “Title” (Figure 10.4).

Title []

Item [l

Figure 10.4: Editing the Feature Plan 3

These changes were then saved as a hints document for later usage, which is shown below:

<ugh>
<hint ref="@name[1]”>
<label>Title</label>
</hint>
<hint ref="@status[1]”>

S O 00 J QN

10.3 Tweaking The GUI

&5

<position>
<leftOf>@target[1]</leftOf>
</position>
</hint>
<ugh>

Listing 10.4: Hints for the Feature Plan

Chapter 11

Conclusion And QOutlook

This thesis has presented the development of a framework for automatic GUI generation with
the kxforms GUI description language and the application KXForms. It can handle those
cases, where a description of the underlying data is available. Much information can be ex-
tracted from the description, allowing for a basic but working GUI. Furthermore, a flexible
approach for modifying those GUI was developed, called hints. Therewith, a generated GUI
can be modified and adapted, e.g. to match some guidelines.

The prototype application handles all tasks of the workflow, namely parsing the data de-
scription, generating a GUI description and finally instantiating a GUI from it. It also has an
edit mode built in, which allows to edit a GUI on the fly in WYSIWYG style and export the
required hints for the changes that were made.

For the application to be a generic solution for automatic GUI generation, some work has
yet to be done though. The XML Schema parser does not support all features of XML Schema
(derivation for example). Additionally, the edit mode does not support all hints of the kxforms
specification and some other functions are not working properly yet.

But these issues can be sorted out. If more parsers for other data formats are created and the
functionality is offered in form of a library, many applications could benefit from this solution.

As a next intermediate step, another format which is not as complex as XML Schema could
be supported, for example. One option is KConfig XT, which is a configuration framework for
KDE. It also has a description of the available options which could be automatically turned
into a GUI. Supporting KConfig XT, KXForms could be used in every KDE application to

automatically generate the configure dialogs.

Appendix A: Bibliography

[1] Christophe Coenraets. An overview of MXML: The Flex markup language. 2003.
http://www.adobe.com/devnet/flex/articles/paradigm.html.

[2] KDE developers. KDE 4.0 Feature Plan. 2007.
http://developer.kde.org/development-versions/kde-4.0-features.html.

[3] KDE developers. KDE Human Interface Guidelines. 2007.
http://usability.kde.org/hig/.

[4] KDE developers. Kode. 2007.
http://rechner.lst.de/~cs/kode/.

[5] Andre Duffeck. KXForms Specification. Suse Linux Products GmbH, 2007.
http://websvn.kde.org/trunk/KDE/kdepim/kode/kxforms/doc/.

[6] JSusan L. Fowler. GUI Design Handbook. 1997.

[7] Ian Griffiths. Inside XAML. 2004.
http://www.ondotnet.com/pub/a/dotnet/2004/01/19/1onghorn.html.

[8] IBM. Design basics. 2007.
http://www-03.ibm.com/easy/page/6.

[9] Jeft Johnson. GUI Bloopers: Don’ts and Do’s for Software Developers and Web Design-
ers. 2000.

[10] Soffa M.L. Memon, A.M. and M.E. Pollack. Coverage Criteria for GUI Testing. Vienna
University of Technology, Austria, 2001.

[11] Inc. OASIS Open. User Interface Markup Language (UIML) Specification. 2004.
http://www.uiml.org/specs/uiml3/DraftSpec.htm.

[12] The Mozilla Project. Firefox Add-ons. 2007.
https://addons.mozilla.org/en-US/firefox/.

Appendix A: Bibliography 88

[13] The Mozilla Project. XUL. 2007.
http://developer.mozilla.org/en/docs/XUL.

[14] Brent Rector. Introducing Longhorn for Developers, Chapter 3 Inside XAML. 2003.
http://msdn2.microsoft.com/en-us/library/aal86116.aspx.

[15] W3C. XForms - The Next Generation of Web Forms. 2002.
http://www.w3.org/MarkUp/Forms/.

[16] W3C. XML Schema Part 0: Primer Second Edition. 2004.
http://www.w3.org/TR/xmlschema-0/.

[17] W3C. XML Schema Part 1: Structures Second Edition. 2004.
http://www.w3.org/TR/xmlschema-1/.

[18] W3C. XML Schema Part 2: Datatypes Second Edition. 2004.
http://www.w3.org/TR/xmlschema-2/.

[19] W3C. XForms 1.0 (Second Edition). 2006.
http://www.w3.org/TR/xforms/.

[20] Ltd. Wireless Application Protocol Forum. Wireless Markup Language. 2001.
http://www.openmobilealliance.org/tech/DTD/index.htm.

[21] Larry E. Wood. User Interface Design: Bridging the Gap from User Requirements to
Design. 1998.

[22] XULPlanet. XULPlanet.com. 2006.
http://www.xulplanet.com.

Appendix B: Glossary

API Application Programming Interface. A source code interface that allows
to use services of libraries or applications.

CSS ... Cascading Style Sheets. A stylesheet language, that can be used to define
the presentation of a underlying document.

Form A form is a part of a graphical user interface. It encapsulates several wid-

gets and only one form can be shown at once

GUI Graphical User Interface

HIG Human Interface Guideline

HTML Hypertext Markup Language. A markup language for the creation of web
pages.

OSS Open Source Software

RelaxNG RelaxNG is an XML schema language such as XML Schema. In contrast

to other schema languages, it is known to be very simply and elegant.
Ul.............. User Interface

UIML User Interface Markup Language

widget Single graphical element of a GUI, such as a button, an icon or a progress-
bar

WYSIWYG What-You-See-Is-What-You-Get describes a mode of editing, where the
final result is immediately visible while editing

XML Extensible Markup Language

XUL XML User Interface Language. A user interface markup language devel-

oped by the Mozilla project.

Appendix C: The kxforms Specification

Chapter 1

Introduction

KXForms is a description language which provides facilities for describing user interfaces.

The language, which itself is presented in XML 1.0, is based on parts of the W3C XForms.

Chapter 2

KXForms

2.1

KXForms Common

2.1.1 Common Attributes

ref

O 0 31 N U b~ W N —

e e e e e T
00 N N Bt AW N = O

The ref attribute describes a reference to the XML element which is represented through

the element. This attribute is mandatory for all GUI elements.

Consider the following xml document:

<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:k="http://inttools.suse.de/sxkeeper/schema/keeper"
elementFormDefault="qualified">
<xs:element name="feature">
<xs:complexType>
<xs:element ref="title"/>
<xs:element ref="partnercontext"/>
</xs:complexType>

</xs:element>

<xs:element name="title" type="xs:string"/>

<xs:element name="partnercontext">
<xs:complexType>

<xs:sequence>

<xs:element ref="organization"/>

<xs:element ref="externalid"/>

2.1 KXForms Common 93

19
20
21
22
23
24
25
26

O 0 31 O U b~ W N —

10

12
13
14
15

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="organization" type="xs:string"/>

<xs:element name="externalid" type="xs:string"/>

</xs:schema>

Listing 2.1: Example Schema

The main form would in this case relate to the “feature” element, thus the ref argument
would be set to “/feature”. The references are heritable, which means that the child
elements of this form automatically refer to the feature element. Thus, the reference to
the “title” element would be “/title[1]” instead of “/feature/title[1]”.

The number at the end of a reference refers to the occurrence of this element, so [1]

addresses the first “title” element, [2] the second one and so on.

A possible kxform document for the example schema could look like this:

<form ref="/feature">
<xf:label>Feature</xf:label>
<xf:textarea ref="/title[1]">
<xf:label>Title</xf:label>
</xf:textarea>
<section ref="/">
<xf:label>Partnercontext</xf:label>
<xf:textarea ref="/partnercontext[l1]/organization[1]">
<xf:label>0rganization</xf:label>
</xf:textarea>
<xf:textarea ref="/partnercontext[1]/externalid[1]">
<xf:label>Externalid</xf:label>
</xf:textarea>
</section>

</form>

Listing 2.2: Example KXForms Document

2.1 KXForms Common 94

2.1.2 Common Child Elements

xf:label

tip

The xf : 1abel child element is derived from XForms. It is used to define the label that
is shown for the corresponding GUI element. If this element is omitted, the application
should try to generate an appealing label from the available information (the element

name in most cases).

The tip child element allows to provide a tooltip for controls. The presentation of the
tip is left to the application but usually it will just be displayed after the mouse rested a
bit over the control.

<xf:input ref="/password">
<xf:label>Password:</xf:label>

<tip>Please enter your private password.</tip>
</xf:input>

Listing 2.3: xf : 1abel and tip element

attributes

O 0 3 O D b~ W N =

10

12

The attributes child element encapsulates GUI Elements, that map to attributes of
the parent element in the XML Schema. These elements might be visually separated

from the other normal elements in order to make clear they are attributes.

e Valid Child Elements: xf :input, xf:textarea (2.3)

<xf:textarea ref="/productid[1]">
<xf:label>Productid</xf:label>
<attributes>
<xf:input ref="Q@legacypriotype">
<xf:label>Legacypriotype</xf:label>
</xf:input>
<xf:input ref="Q@legacytype">
<xf:label>Legacytype</xf:label>
</xf:input>
<xf:input ref="Q@legacyinfo">
<xf:label>Legacyinfo</xf:label>
</xf:input>

2.1 KXForms Common

95

13| </attributes>
14/ </xf:textarea>

Listing 2.4: attributes element

2.2 KXForms Core 96

2.2 KXForms Core

2.2.1 The kxforms Element

Description: This element is the root element of a kxforms document. It contains all forms
that are available in the kxforms document as its child elements. In a valid kxforms
document the forms have to be sufficient to display and edit all elements of a XML

instance of the corresponding XML Schema.
Common Attributes: none
Special Attributes: none
Common Child Elements: none

Special Child Elements:

e form (2.2.2)
e defaults (2.4.1)

Example:

<kxforms>
<defaults>
<properties>

<appearance>Full</appearance>

1
2
3
4
5 <layoutstyle>vertical</layoutstyle>
6| </properties>

7| <defaults>

8| <form ref="category">...</form>

9| <form ref="productcontext">...</form>

10| </kxforms>

Listing 2.5: kxforms Element

2.2.2 The form Element

Description: This element encapsulates one form. A form describes a GUI for one part of
the XML Schema. One form has to be available for the toplevel element and one for the

elements of each list.

2.2 KXForms Core

97

Common Attributes: Common (2.1.1)
Special Attributes: none
Common Child Elements: Common (2.1.2)

Special Child Elements: groups (2.4.2), GUI Elements (2.3)

Example:
l|<form ref="category">
2| <xf:label>Category:</xf:label>
3
4/</form>

Listing 2.6: form Element

2.3 KXForms GUI Elements Descriptions 98

2.3 KXForms GUI Elements Descriptions

2.3.1 The xf:input Element

Description: This element is derived from XForms. An input field enables free-form data
entry. In contrast to the xf: textarea Element that is described below, it only allows

single-line input.
Common Attributes: Common (2.1.1)
Special Attributes: none
Common Child Elements: Common (2.1.2)
Special Child Elements: inputproperties (2.4.11), properties (2.4.12)

Example:

—_—

<xf:input ref="/externalid">
<xf:label>Name:</xf:label>
</xf:input>

W N

Listing 2.7: xf : input Element

2.3.2 The xf:textarea Element

Description: This element is derived from XForms. A textarea is used for free-form data and

can contain arbitrary text and control sequences, e.g. linebreaks.
Common Attributes: Common (2.1.1)
Special Attributes: none
Common Child Elements: Common (2.1.2)
Special Child Elements: inputproperties (2.4.11), properties (2.4.12)

Example:

—

<xf:textarea ref="/partnercontext [1]/externalid[1]">

<xf:label>Externalid</xf:label>

W N

</xf:textarea>

Listing 2.8: xf : textarea Element

2.3 KXForms GUI Elements Descriptions 99

2.3.3 The 1list Element

Description: This element enables handling of lists of elements. A list can contain one

or more types of elements which are specified by the itemClass child element. The

number of columns and their content are also defined there per type of element. The

headers can be defined using the headers child element. The 1ist element is capable

of both showing plain lists and tree structures.

Common Attributes: Common (2.1.1)

Special Attributes:

showHeader [optional] [default=false]
An optional attribute that defines whether the list should display a header describ-

ing the columns or not. It can be either “true” or “false”. If it is omitted, no

header should be shown.
showSearch [optional] [default=false]

An optional attribute that defines whether the list should present a facility to search

items in the list. This is very useful for editing lists with a large number of items.
minOccurs [optional] [default=0]

An optional attribute specifying the minimum number of elements the list has to
contain in order to build a valid xml document. The default minimum number is 0.
max0Occurs [optional] [default=0]

An optional attribute specifying the maximum number of elements the list may
contain in order to build a valid xml document. The default maximum number is

0. A maximum of 0 means that the occurrence is unbounded.

Common Child Elements: Common (2.1.2)

Special Child Elements:

Example:

headers (2.4.4)
Defines the headers of the columns.
itemClass (2.4.6)

Defines the element that the list corresponds to when the list operates in single-

column mode.

2.3 KXForms GUI Elements Descriptions 100

<list showHeader="true">
<xf:label>Item</xf:label>
<itemclass ref="/feature">
<itemlabel><itemLabelArg ref="/summary[1]"
truncate="40"/></itemlabel>
<itemlabel><itemLabelArg ref="/@status [1]"
truncate="40"/></itemlabel>
<itemlabel><itemLabelArg ref="/@target [1]"
truncate="40"/></itemlabel>
</itemclass>
<itemclass ref="/category">
<itemlabel>Category: <itemLabelArg ref="Q@name"/></itemlabel
</itemclass>
<headers>
<header>Summary</header>
<header>Status</header>
<header>Target</header>
</headers>

</list>

A\

Listing 2.9: 1ist Element

2.3.4 The section Element

Description: The section element is used to visually encapsulate a set of elements. That

is appropriate when a complexType element with several child elements is shown, for

example. As a result the GUI should be less cluttered.

Common Attributes: Common (2.1.1)

Special Attributes:

e externallabel [optional] [default=false]
Most widgets that are used to group elements provide a possibility to attach a title
or label. In most cases this will look more polished and less cluttered than an
external label as it is used with the other GUI elements. If desired it can still be

used by setting the externalLabel attribute to true.

2.3 KXForms GUI Elements Descriptions 101

Common Child Elements: Common (2.1.2), GUI Elements (2.3)
Special Child Elements: none

Example:

<section ref="/">
<xf:input ref="/organisation"/>

1
2
3] <xf:input ref="/externalid"/>
4

</section>

Listing 2.10: section Element

2.3.5 The xf:selectl Element

Description: This element is derived from XForms. It allows the user to make a single

selection from multiple choices.
Common Attributes: Common (2.1.1)
Special Attributes: none
Common Child Elements: Common (2.1.2)
Special Child Elements: xf :item (2.4.9)

Example:

<xf:selectl ref="/documentationstatus[1]">
<xf:label>Status of the documentation: </xf:label>
<xf:item>

<xf:label>Postponed</xf:label>

1
2
3
4
5 <xf:value>postponed</xf:value>
6| </xf:item>

7 <xf:item>

8 <xf:label>Information required </xf:label>
9 <xf:value>needinfo</xf:value>

10| <xf:item>

11| </xf:selectl>

Listing 2.11: xf: select1 Element

2.3 KXForms GUI Elements Descriptions

102

2.3.6 The xf:select Element

Description: This element is derived from XForms. It allows the user to make one ore more

selections from multiple choices.
Common Attributes: Common (2.1.1)
Special Attributes: appearance (2.7.3)
Common Child Elements: Common (2.1.2)
Special Child Elements: xf:item (2.4.9)

Example:

<xf:select ref="/attendees">
<xf:label>Attendees of the meeting: </xf:label>
<xf:item>

<xf:label>Developer</xf:label>

1
2
3
4
5 <xf:value>developer</xf:value>
6| </xf:item>

7 <xf:item>

8 <xf:label>Manager</xf:label>

9 <xf:value>manager</xf:value>
10| <xf:item>

11| </xf:select>

Listing 2.12: section Element

2.4 KXForms Special Elements Descriptions 103

2.4

KXForms Special Elements Descriptions

2.4.1 The defaults Element

Description: This element lets you set defaults that will be used for the whole document.

If this element does not exist, the kxforms defaults are applied, however it might be

advisable to override these defaults in some cases.

Common Attributes: none

Special Attributes: none

Common Child Elements: none

Special Child Elements: inputproperties (2.4.11), properties (2.4.12)

<defaults>
<inputproperties>
<type>xs:integer</type>
</inputproperties>
<properties>
<appearance>Full</appearance>
<layoutstyle>vertical</layoutstyle>
</properties>
</defaults>

Listing 2.13: defaults Element

2.4.2 The groups Element

Description: This element defines the groups that are available on the corresponding form.

By default, all controls are placed at the same page. When there are too many controls
or there is a strong logical separation between them it might be appropriate to put them

into groups. These groups can be declared using the groups element.

The placement and presentation of the groups is left to the application. In most cases, a

tab widget might the most appropriate kind of presentation.

Common Attributes: none

2.4 KXForms Special Elements Descriptions 104

Special Attributes: none
Common Child Elements: none
Special Child Elements: group (2.4.3)

Example:

<groups>

<group id="feature">Feature Data</group>

1
2
3| <group id="product">Product Data</group>
4| <group id="doc">Documentation</group>

5

</groups>

Listing 2.14: groups Element

2.4.3 The group Element

Description: This element specifies the titles of one group on the form.
Common Attributes: none

Special Attributes:
e id
This attribute specifies the title of the a group. This group can then be referenced
from GUI Elements by its id in order to be put in this group.

Common Child Elements: none
Special Child Elements: none

Example:

—

<group id="feature">Feature Data</group>

Listing 2.15: group Element

2.4 KXForms Special Elements Descriptions

105

2.4.4 The headers Element

Description: This element is used to specify the columns of a list.

Common Attributes: none

Special Attributes: none

Common Child Elements: none

Special Child Elements: header (2.4.5)

Example:

1
2
3
4
5

<headers>
<header>Summary</header>
<header>Status</header>
<header>Target</header>

</headers>

Listing 2.16: headers Element

2.4.5 The header Element

Description: This element defines the header of a column in a list element.

Common Attributes: none

Special Attributes: none

Common Child Elements: none

Special Child Elements: none

Example:

1

<header>Summary</header>

Listing 2.17: header Element

2.4 KXForms Special Elements Descriptions 106

2.4.6 The itemClass Element

Description: This element describes the element a list corresponds to.
Common Attributes: Common (2.1.1)

Special Attributes:

e list [optional] [default=false]

This attribute specifies if items of this class should be displayed recursively, build-
ing a tree. That sometimes gives a better overview over the data and makes navi-

gation easier.
Common Child Elements: none
Special Child Elements: itemLabel (2.4.7)

Example:

l{<itemclass ref="/productcontext">

2| <itemlabel>

3 <itemLabelArg ref="/product/productid" truncate="20"/>
4| </itemlabel>

5

</itemclass>

Listing 2.18: itemClass Element

2.4.7 The itemLabel Element

Description: This element describes which element provides the label for a single-column
list.

Common Attributes: none

Special Attributes: none

Common Child Elements: none

Special Child Elements: itemLabelArg (2.4.8)

Example:

2.4 KXForms Special Elements Descriptions 107

—_—

<itemlabel>Product-Id: <itemLabelArg ref="/product/productid"
truncate="20"/></itemlabel>

\)

Listing 2.19: itemLabel Element

2.4.8 The itemLabelArg Element

Description: This element defines a reference to an xml entity which will be substituted into
the label for the list.

Common Attributes: Common (2.1.1)

Special Attributes:

e truncate [optional]

Optional attribute that defines after how many chars the label should be truncated.
If the label succeeds the defined length, it will be truncated and “...” should be
appended to indicate the truncation.

Common Child Elements: none
Special Child Elements: none

Example:

[

<itemLabelArg ref="/product/productid" truncate="20"/>

Listing 2.20: itemLabelArg Element

2.4.9 The xf:item Element

Description: This element is derived from XForms. It defines one choice in controls that

allow the user to choose between several items.
Common Attributes: none
Special Attributes: none
Common Child Elements: Common (2.1.2)

Special Child Elements: xf :value (2.4.10)

2.4 KXForms Special Elements Descriptions 108

Example:

1
2
3
4

<xf:item>
<xf:label>Implementation</xf:label>
<xf:value>implementation</xf:value>

</xf:item>

Listing 2.21: xf : item Element

2.4.10 The xf:value Element

Description: This element is derived from XForms. It defines a value that is returned for a

selection, for example in a selectl control (2.3.5).

Common Attributes: none

Special Attributes: none

Common Child Elements: none

Special Child Elements: none

Example:

[u—y

<xf:value>implementation</xf:value>

Listing 2.22: xf : value Element

2.4.11 The inputproperties Element

Description: The inputproperties element encapsulates further specifications of the con-

tent of input controls. This can be the type or regular expressions as constraints for

example.

Common Attributes: none

Special Attributes: none

Common Child Elements: none

Special Child Elements: Input Property Elements (2.5)

Example:

2.4 KXForms Special Elements Descriptions 109

l|<inputproperties>

2| <type>xs:integer</type>

3| <constraint>\d\wx</constraint>
4

</inputproperties>

Listing 2.23: properties Element

2.4.12 The properties Element

Description: The properties element encapsulates further specifications of the parent con-

trol, such as relevance or layout information.
Common Attributes: none
Special Attributes: none
Common Child Elements: none
Special Child Elements: Property Elements (2.6)

Example:

<properties>

<layout>

1
2
3 <halign>right</halign>
4| </layout>

5

</properties>

Listing 2.24: properties Element

2.5 KXForms Input Property Elements Descriptions 110

2.5 KXForms Input Property Elements Descriptions

2.5.1 The type Element

Description: The type element defines the type of the data that is hold in the corresponding
control. All XML Schema types should be supported. Depending on the type, the
application can display other widgets for the control, e.g. a lineedit for xs:string, a

spinbox for xs:integer and so on.

Additionally, the type element should be used to validate the content of the control. A

xs:integer control containing chars should be qualified as invalid, for example.
Possible Content: One of the datatypes defined in the XML Schema specification.
Default: xs:string

Example:

—_—

<type>xs:string</type>

Listing 2.25: type Element

2.5.2 The constraint Element

Description: This element holds a regular expression that the content of the control has to
match in order to be qualified as valid. If invalid the control should visually indicate the

invalid state and circumvent the data to be stored as XML.
Possible Content: A regular expression.
Default: none

Example:

—

<constraint>\w{3}\d</constraint>

Listing 2.26: contraint Element

2.6 KXForms Property Elements Descriptions 111

2.6 KXForms Property Elements Descriptions

2.6.1 The readonly Element

Description: This element is used to mark controls as read-only, thus preventing the user to

edit the content.
Possible Content: true — false
Default: false

Example:

l|<readonly>true</readonly>

Listing 2.27: readonly Element

2.6.2 The relevant Element

Description: With the relevant element it is possible to activate controls depending on the
state of another control. Therefor the value of the element specified by the ref attribute
is evaluated and compared to the value of the relevant element. If they match the

control is set to read-and-write state, if they don’t it is set to read-only state.
Possible Content: A regular expression.
Default: none

Example:

—_—

<relevant ref="id/isExternal">true</>

Listing 2.28: relevant Element

2.6.3 The layout Element

Description: This element is used to define the layout of the GUI more fine-grained.
Possible Content: Layout elements (2.7)
Default: none

Example:

2.6 KXForms Property Elements Descriptions 112

I|<layout>

2| <page>1</page>

3| <position>-1</position>
4/</layout>

Listing 2.29: 1ayout Element

2.7 KXForms Layout Elements Descriptions 113

2.7 KXForms Layout Elements Descriptions

2.7.1 The groupRef Element

Description: Per default, all controls of a form are placed on one form in the order they
appear in the kxforms document. If there are too many of them the resulting GUI might
be cluttered or might not fit on the screen. A possible solution is to encapsulate the
controls in groups. Elements which belong to the same group will then be placed next

to each other and if the groups occupy too much space, they are put into tabs.

If the groupRef property of an element is empty, it is put into an abstract group after all

defined groups.
Possible Content: String
Default: empty

Example:

—

<groupRef>other</other>

Listing 2.30: groupRef Element

2.7.2 The position Element

Description: This element defines the position of the control. The positions are given in a
relational approach, that means that the position is defined in relation to another element.

Both elements have to be in the same group, otherwise the directive will have no effect.
The relations can be given with four different tags:

o leftOf
rightOf

below

e above
Possible Content: Arbitrary combination of 1eft0f, right0f, below and above elements
Default: empty

Example:

2.7 KXForms Layout Elements Descriptions 114

—_—

<position>
<right0f>/title</right0f>

\)

(O8]

</position>

Listing 2.31: position Element

2.7.3 The appearance Element

Description: This element tells the application how to render the control it is applied to.
“full” indicates that all options should always be visible. “compact” means that an
adequate number of options should be shown at once while “minimal” should result in

a presentation that always shows just one option at once and thus takes up the minimum

space.
Possible Content: full — compact — minimal
Default: minimal

Example:

—

<appearance>Full</appearance>

Listing 2.32: appearance Element

2.7.4 The layoutstyle Element

Description: Elements usually exist of two parts: The widget containing the actual data and
a label widget, showing a descriptive title for the element. This element can be used to
change the way, the application should arrange these two widgets. There are two options
available:

e horizontal
This option is chosen, the application should place the label widget left of the
widget, showing the data.

e vertical
This option is chosen, the application should place the label above the widget,

showing the data.

Possible Content: horizontal — vertical

2.7 KXForms Layout Elements Descriptions 115

Default: horizontal

Example:

—

<layoutstyle>vertical</layoutstyle>

Listing 2.33: 1layoutstyle Element

Chapter 3

Hints

Usually, a GUI that is generated only from the schema describing the data will not fulfill all
requirements on a modern user interface. Therefor, hints can be merged into the kxforms

document.

3.1 Technique

A hint is an XML fragment and states a directive to the application, to change a property of
an element. Thus, the hint has to describe which element it addresses. This is done using a
XPath expression (see 2.4).

The hint can now specify a property of the element and the value it should be overridden

with. Thereby there are two different types of hints available:

e Key-Value hints

This kind of hints is used to specify the value of one property. This is applicable to

simple type properties such as a label.

[u—

<hint ref="/title[1]">
<label>Title of the Feature</label>
</hint>

W N

Listing 3.1: Example of a Key-Value hint

o Valuelist hints

There are however properties that can not be described with one value. Therefor, this
type of hint can be used. The content of the hint is again an XML fragment. The parent
XML element describes the property that is changed. This element can then have a list

of values as child elements.

3.2 Implemented Hints 117

1| <hint ref="/title[1]">

2 <position>

3 <right0f>/description[1]</right0f>
4 <above>/list_actors [1]</above>

5 </position>

6| </hint>

Listing 3.2: Example of a valuelist hint

GUI Element

Figure 3.1: Hint architecture

3.2 Implemented Hints

Hints Modifying The Displayed Data

The plainest and probably most common modification, a developer or GUI-designer wants to
do is changing the data that is shown. The following list will describe the hints that make such

changes possible.

o label

Usually an element is labeled with its “name” attribute. In some cases these attributes
might be abbreviations, non-readable ids or simply not understandable enough so that
it is advisable to display a different label in the GUI. That can be achieved using the
label-hint.

This hint simply overrides the automatic label generation mechanism and defines the

label of the specified element.

3.2 Implemented Hints 118

—_—

<hint ref="mneedinfo">

\)

<label>Information required </label>
</hint>

98]

Listing 3.3: label hint

ref defines the element of the XML-Schema this hint should be applied to
label specifies the label that should be applied

This example would change the displayed label of the “needinfo” element from “Need-

Info” to “Information required”.

e appearance

This hint modifies the “appearance” property of an element.

—

<hint ref="/status[1]">
2 <appearance>full</appearance>
3] </hint>

Listing 3.4: appearance hint

¢ layoutStyle

This hint modifies the “layoutStyle” property of an element.

1| <hint ref="/status[1]">
2 <layoutStyle>vertical</layoutStyle>
3| </hint>

Listing 3.5: layoutStyle hint

Behavioural Hints

e readOnly

This hint modifies the “readOnly” property of an element.

—_—

<hint ref="/status[1]">
2 <readOnly>false</readOnly>
3] </hint>

Listing 3.6: readOnly hint

3.2 Implemented Hints 119

w N =

inputType
With the ”inputType* hint, it is possible to override the type of an Input element.

<hint ref="/duration[1]">
<inputType>xs:integer</inputType>
</hint>

Listing 3.7: inputType hint

Positioning hints

AN N AW N =

w N =

groups

The groups hint can be used to define a set of element groups, where the elements can

be put into.

<hint ref="/feature">
<groups>
<group id="feature">Feature</group>
<group id="documentation">Documentationstatus</group>
</groups>
</hint>

Listing 3.8: groups hint

groupRef

This hint puts an element into a specific group

<hint ref="/duration[1]">

<groupRef>feature</groupRef >
</hint>
Listing 3.9: groupRef hint
position

With this hint a relational position description of an element can be created.

<hint ref="/title[1]">
<position>
<right0f>/description[1]</right0f>

<above>/list_actors [1]</above>

3.2 Implemented Hints 120

5 </position>
6/ </hint>

Listing 3.10: position hint

o formSizeThreshold

This hint sets the size threshold of a form, which is used to determine the placement of

the groups.

—_—

<hint ref="/feature">

2 <formSizeThreshold>120</formSizeThreshold>
3] </hint>
Listing 3.11: formSizeThreshold hint
List hints

There are two different types of lists, lists of SimpleType elements and lists of ComplexType
elements. SimpleType lists are straightforward, they just show the content of the elements.
In the case of ComplexType elements however, there are many possibilities to modify the
appearance of the lists. The following list describes those possibilities and the corresponding

hints.

o listItemLabel

KXForms is capable of presenting lists of elements. Usually, the elements are simple
elements which can be shown in the list directly. If the elements are complex elements,
it is important to show a subelement in the list which describes or identifies the element

best.

If no further information is given, KXForms chooses the first simple element. This
might not always be the best choice, so it can be overridden using the 1istItemLabel

hint.

1| <hint ref="/product[1]">

2| <listItemLabel>Version <itemLabelArg ref="/@version[1]"
3 truncate="40"/></listItemLabel>

4/ </hint>

Listing 3.12: ListItemLabel hint

3.2 Implemented Hints 121

e listShowSearch

This hint sets the filter bar to visible or hidden. Showing the filter bar is advisable
for lists which contain many entries, so that filtering for a string might help finding a

specific item.

<hint ref="list_productcontext">
2 <listShowSearch>true</listShowSearch>
</hint>

Listing 3.13: listShowSearch hint

e listShowHeader

By default, the headers of lists are hidden. In most cases it is not necessary to describe
the data that is shown because it is either the content of the elements itself or in cases

complexTypes a descriptive subelement, eventually chosen with a 1istItemLabel hint.

Sometimes it still might be necessary to show the header, for example if the list has more
than one column. That can be achieved using the 1istShowHeader hint as demonstrated

below.

1| <hint ref="list_productcontext">
2 <listShowHeader>true</listShowHeader>
3| </hint>

Listing 3.14: listShowHeader hint

o listHeader

The listHeader hint lets one override the label of a column in a list, e.g. if the auto-

matically generated one is not understandable.

—_—

<hint ref="/status[1]">
<listHeader>Feature status</listHeader>

</hint>

W N

Listing 3.15: listHeader hint

o listItemList

The listItemList hint can be used to mark a type of list item as a list item. That

means, that it contains other elements, which can be shown by expanding this item.

3.2 Implemented Hints 122

1| <hint ref="/category[1]">
2 <listItemList>true</listItemList>
3] </hint>

Listing 3.16: listItemList hint

